Skip to main content

The Mating-Type Switch in Yeasts

  • Chapter
Growth, Differentiation and Sexuality

Part of the book series: The Mycota ((MYCOTA,volume 1))

Abstract

In homothallic (self-compatible) strains of the yeasts Saccharomyces cerevisiae and Schizosac-charomyces pombe, individual cells switch their mating type (MT) in a programmed manner. In contrast, the cells of heterothallic (self-incompatible) strains have a stable MT. These are called a and a in S. cerevisiae and h + and h - in S. pombe. Only cells of opposite MT can copulate. This chapter will deal with the intriguing process of MT switching, also termed MT interconversion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arcangioli B, Klar AJS (1991) A novel switch-activating site (SAS1) and its cognate binding factor (SAP1) required for efficient matl switching in Schizosaccharo-mycespombe. EMBO J 10:3025–3032

    PubMed  CAS  Google Scholar 

  • Beach DH (1983) Cell type switching by DNA transposition in fission yeast. Nature 305:682–688

    Article  CAS  Google Scholar 

  • Beach DH, Klar AJS (1984) Rearrangements of the trans-posable mating-type cassettes of fission yeast. EMBO J 3:603–610

    PubMed  CAS  Google Scholar 

  • Bernstein H, Hopf FA, Michod RE (1987) The molecular basis of the evolution of sex. Adv Genet 24:323–370

    Article  PubMed  CAS  Google Scholar 

  • Carr AM, Sheldrick KS, Murray JM, Al-Harithy R, Watts FZ, Lehmann AR (1993) Evolutionary conservation of excision repair in Schizosaccharomycespombe: evidence for a family of sequences related to the Saccharomyces cerevisiae RAD2 gene. Nucleic Acids Res 21:1345–1349

    Article  PubMed  CAS  Google Scholar 

  • Egel R (1977) Frequency of mating type switching in homothallic fission yeast. Nature 266:172–174

    Article  PubMed  CAS  Google Scholar 

  • Egel R (1984a) Two tightly linked silent cassettes in the mating-type region of Schizosaccharomyces pombe. Curr Genet 8:199–203

    Article  Google Scholar 

  • Egel R (1984b) The pedigree pattern of mating-type switching in Schizosaccharomyces pombe. Curr Genet 8:205–210

    Article  Google Scholar 

  • Egel R (1989) Mating-type genes, meiosis and sporulation. In: Nasim A, Young P, Johnson BF (eds) Molecular biology of the fission yeast. Academic Press, London, pp 31–73

    Chapter  Google Scholar 

  • Egel R, Gutz H (1981) Gene activation by copy transposition in mating-type switching of a homothallic fission yeast. Curr Genet 3:5–12

    Article  Google Scholar 

  • Egel R, Kohli J, Thuriaux P, Wolf K (1980) Genetics of the fission yeast Schizosaccharomyces pombe. Annu Rev Genet 14:77–108

    Article  PubMed  CAS  Google Scholar 

  • Egel R, Beach DH, Klar AJS (1984) Genes required for initiation and resolution steps of mating-type switching in fission yeast. Proc Natl Acad Sci USA 81:3481–3485

    Article  PubMed  CAS  Google Scholar 

  • Egel R, Willer M, Nielsen O (1989) Unblocking of meiotic crossing-over between the silent mating-type cassettes of fission yeast, conditioned by the recessive, pleiotropic mutant rikl. Curr Genet 15:407–410

    Article  Google Scholar 

  • Ekwall K, Nielsen O, Ruusala T (1991) Repression of a mating-type cassette in the fission yeast by four DNA elements. Yeast 7:745–755

    Article  PubMed  CAS  Google Scholar 

  • Engelke U, Grabowski L, Gutz H, Heim L, Schmidt H (1987) Molecular characterization of h~ mutants of Schizosaccharomyces pombe. Curr Genet 12:535–542

    Article  CAS  Google Scholar 

  • Fleck O, Heim L, Gutz H (1990) A mutated swi4 gene causes duplications in the mating-type region of Schizosaccharomyces pombe. Curr Genet 18:501–509

    Article  PubMed  CAS  Google Scholar 

  • Fleck O, Michael H, Heim L (1992) The swi4 + gene of Schizosaccharomyces pombe encodes a homologue of mismatch repair enzymes. Nucleic Acids Res 20: 2271–2278

    Article  PubMed  CAS  Google Scholar 

  • Game JC (1983) Radiation-sensitive mutants and repair in yeast. In: Spencer JFT, Spencer DM, Smith ARW (eds) Yeast genetics. Springer, Berlin Heidelberg New York, pp 109–137

    Chapter  Google Scholar 

  • Gutz H, Angehrn P (1968) Lethal mutations in the mating-type region of Schizosaccharomyces pombe (Abstr). Genetics 60:186

    Google Scholar 

  • Gutz H, Schmidt H (1985) Switching genes in Schizosaccharomyces pombe. Curr Genet 9:325–331

    Article  CAS  Google Scholar 

  • Gutz H, Schmidt H (1990) The genetic basis of homothallism and heterothallism in Saccharomyces cerevisiae and Schizosaccharomyces pombe. Semin Dev Biol 1:169–176

    Google Scholar 

  • Gutz H, Heslot H, Leupold U, Loprieno N (1974) Schizosaccharomyces pombe. In: King RC (ed) Handbook of genetics, vol 1. Plenum Press, New York, pp 395–446

    Google Scholar 

  • Haber JE (1983) Mating-type genes of Saccharomyces cerevisiae. In: Shapiro JA (ed) Mobile genetic elements. Academic Press, New York, pp 559–619

    Google Scholar 

  • Haber JE (1992) Mating-type gene switching in Saccharomyces cerevisiae. Trends Genet 8:446–452

    PubMed  CAS  Google Scholar 

  • Herskowitz I (1988) The Hawthorne deletion twenty-five years later. Genetics 120:857–861

    PubMed  CAS  Google Scholar 

  • Herskowitz I (1989) A regulatory hierarchy for cell specialization in yeast. Nature 342:749–757

    Article  PubMed  CAS  Google Scholar 

  • Herskowitz I, Oshima Y (1981) Control of cell type in Saccharomyces cerevisiae: Mating type and mating-type interconversion. In: Strathern JN, Jones EW, Broach JR (eds) The molecular biology of the yeast Saccharomyces. Life cycle and inheritance. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp 181–209

    Google Scholar 

  • Herskowitz I, Rine J, Strathern J (1992) Mating-type determination and mating-type interconversion in Saccharomyces cerevisiae. In: Jones EW, Pringle JR, Broach JR (eds) The molecular and cellular biology of the yeast Saccharomyces. Gene expression. Cold Spring Harbor Laboratory Press, Plainview, NY, pp 583–656

    Google Scholar 

  • Kelly M, Burke J, Smith M, Klar A, Beach D (1988) Four mating-type genes control sexual differentiation in the fission yeast. EMBO J 7:1537–1547

    PubMed  CAS  Google Scholar 

  • Klar AJS (1989) The interconversion of yeast mating type: Saccharomyces cerevisiae and Schizosaccharomyces pombe. In: Berg DE, Howe MM (eds) Mobile DNA. American Society for Microbiology, Washington, DC, pp 671–691

    Google Scholar 

  • Klar AJS (1992a) Molecular genetics of fission yeast cell type: Mating type and mating-type interconversion. In: Jones EW, Pringle JR, Broach JR (eds) The molecular and cellular biology of the yeast Saccharomyces. Gene expression. Cold Spring Harbor Laboratory Press, Plainview, NY, pp 745–777

    Google Scholar 

  • Klar AJS (1992b) Developmental choices in mating-type interconversion in fission yeast. Trends Genet 8:208–213

    PubMed  CAS  Google Scholar 

  • Klar AJS, Miglio LM (1986) Initiation of meiotic recombination by double-strand DNA breaks in S. pombe. Cell 46:725–731

    Article  PubMed  CAS  Google Scholar 

  • Klar AJS, Strathern JN, Hicks JB (1984a) Developmental pathways in yeast. In: Losick R, Shapiro L (eds) Microbial development. Cold Spring Habor Laboratory, Cold Spring Harbor, NY, pp 151–195

    Google Scholar 

  • Klar AJS, Strathern JN, Abraham JA (1984b) Involvement of double-strand chromosomal breaks for mating-type switching in Saccharomyces cerevisiae. Cold Spring Harbor Symp Quant Biol 49:77–88

    Article  PubMed  CAS  Google Scholar 

  • Klar AJS, Bonaduce MJ, Cafferkey R (1991) The mechanism of fission yeast mating-type interconversion: seal/ replicate/cleave model of replication across the double-stranded break site at matl. Genetics 127:489–496

    PubMed  CAS  Google Scholar 

  • Kostriken R, Strathern JN, Klar AJS, Hicks JB, Heffron F (1983) A site-specific endonuclease essential for mating-type switching in Saccharomyces cerevisiae. Cell 35: 167–174

    Article  PubMed  CAS  Google Scholar 

  • Leupold U (1950) Die Vererbung von Homothallie und Heterothallie bei Schizosaccharomyces pombe. C R Trav Lab Carlsberg Sér Physiol 24:381–480

    Google Scholar 

  • Leupold U (1955) Methodisches zur Genetik von Schizosaccharomyces pombe. Schweiz Z allg Pathol Bakteriol 18:1141–1146

    CAS  Google Scholar 

  • Lindegren CC, Lindegren G (1943) A new method for hybridizing yeast. Proc Natl Acad Sci USA 29:306–308

    Article  PubMed  CAS  Google Scholar 

  • Lorentz A, Heim L, Schmidt (1992) The switching gene swi6 affects recombination and gene expression in the mating-type region of Schizosaccharomyces pombe. Mol Gen Genet 233:436–442

    Article  PubMed  CAS  Google Scholar 

  • Lorentz A, Ostermann K, Fleck O, Schmidt H (1994) Switching gene swi6, involved in repression of silent mating-type loci in fission yeast, encodes a homologue of chromatin-associated proteins from Drosophila and mammals. Gene (in press)

    Google Scholar 

  • Michael H (1992) Charakterisierung des L-Bereichs der Paarungstyp-Region von Schizosaccharomyces pombe. Dissertation, Technische Universität Braunschweig, Braunschweig, Germany

    Google Scholar 

  • Miller AM, Nasmyth KA (1984) Role of DNA replication in the repression of silent mating-type loci in yeast. Nature 312:247–251

    Article  PubMed  CAS  Google Scholar 

  • Miyata H, Miyata M (1981) Mode of conjugation in homothallic cells of Schizosaccharomyces pombe. J Gen Appl Microbiol 27:365–371

    Article  Google Scholar 

  • Nasmyth KA (1982) Molecular genetics of yeast mating type. Annu Rev Genet 16:439–500

    Article  PubMed  CAS  Google Scholar 

  • Nielsen O, Egel R (1989) Mapping the double-strand breaks at the mating-type locus in fission yeast by genomic sequencing. EMBO J 8:269–276

    PubMed  CAS  Google Scholar 

  • Oeser H (1962) Genetische Untersuchungen über das Paarungstypverhalten bei Saccharomyces und die Maltose-Gene einiger untergäriger Bierhefen. Arch Mikrobiol 44:47–74

    Article  Google Scholar 

  • Ostermann K, Lorentz A, Schmidt H (1993) The fission yeast rad22 gene, having a function in mating-type switching and repair of DNA damages, encodes a protein homolog to Rad52 of Saccharomyces cerevisiae. Nucleic Acids Res 25:5940–5944

    Article  Google Scholar 

  • Raveh D, Hughes SH, Shafer BK, Strathern JN (1989) Analysis of the HO-cleaved MAT DNA intermediate generated during the mating-tpye switch in the yeast Saccharomyces cerevisiae. Mol Gen Genet 220:33–42

    PubMed  CAS  Google Scholar 

  • Rödel C, Kirchhoff S, Schmidt H (1992) The protein sequence and some intron positions are conserved between the switching gene swilO of Schizosaccharomyces pombe and the human excision repair gene ERCC1. Nucleic Acids Res 20:6347–6353

    Article  PubMed  Google Scholar 

  • Schlake C, Ostermann K, Schmidt H, Gutz H (1993) Analysis of DNA repair pathways of Schizosaccharomyces pombe by means of swi-rad double mutants. Mutat Res 294: 59–67

    Article  PubMed  CAS  Google Scholar 

  • Schmidt H (1987) Strains of Schizosaccharomyces pombe with a disrupted swil gene still show some mating-type switching. Mol Gen Genet 210:485–489

    Article  PubMed  CAS  Google Scholar 

  • Schmidt H (1993) Effective long-range mapping in Schizosaccharomyces pombe with the help of swi5. Curr Genet 24:271–273

    Article  PubMed  CAS  Google Scholar 

  • Schmidt H, Kapitza P, Gutz H (1987) Switching genes in Schizosaccharomyces pombe: their influence on cell viability and recombination. Curr Genet 11:303–308

    Article  CAS  Google Scholar 

  • Schmidt H, Kapitza-Fecke P, Stephen ER, Gutz H (1989) Some of the swi genes of Schizosaccharomyces pombe also have a function in the repair of radiation damage. Curr Genet 16:89–94

    Article  PubMed  CAS  Google Scholar 

  • Singh J, Klar AJS (1993) DNA polymerase-α is essential for mating-type switching in fission yeast. Nature 361: 271–273

    Article  PubMed  CAS  Google Scholar 

  • Sipiczki M (1989) Taxonomy and phylogenesis. In: Nasim A, Young P, Johnson BF (eds) Molecular biology of the fission yeast. Academic Press, London, pp 431–452

    Chapter  Google Scholar 

  • Strathern JN (1988) Control and execution of homothallic switching in Saccharomyces cerevisiae. In: Kucherlapati R, Smith GR (eds) Genetic recombination. American Society for Microbiology, Washington, DC, pp 445–464

    Google Scholar 

  • Strathern JN, Herskowitz I (1979) Asymmetry and directionality in production of new cell types during clonal growth: the switching pattern of homothallic yeast. Cell 17:371–381

    Article  PubMed  CAS  Google Scholar 

  • Strathern JN, Klar AJS, Hicks JB, Abraham JA, Ivy JM, Nasmyth KA, McGill C (1982) Homothallic switching of yeast mating-type cassettes is initiated by a double-stranded cut in the MAT locus. Cell 31:183–192

    Article  PubMed  CAS  Google Scholar 

  • Styrkársdóttir U, Egel R, Nielsen O (1993) The smt-0 mutation which abolishes mating-type switching in fission yeast is a deletion. Curr Genet 23:184–186

    Article  PubMed  Google Scholar 

  • Szostak JW, Orr-Weaver TL, Rothstein RJ (1983) The double-strand-break repair model for recombination. Cell 33:25–35

    Article  PubMed  CAS  Google Scholar 

  • Takano I, Kusumi T, Oshima Y (1973) An a mating-type allele insensitive to the mutagenic action of the homothallic gene system in Saccharomyces diastaticus. Mol Gen Genet 126:19–28

    Article  PubMed  CAS  Google Scholar 

  • Thon G, Klar AJS (1992) The clrl locus regulates the expression of the cryptic mating-type loci of fission yeast. Genetics 131:287–296

    PubMed  CAS  Google Scholar 

  • Thon G, Klar AJS (1993) Directionality of fission yeast mating-type interconversion is controlled by the location of the donor loci. Genetics 134:1045–1054

    PubMed  CAS  Google Scholar 

  • Weeda G, Hoeijmakers JHJ, Bootsma D (1993) Genes controlling nucleotide excision repair in eukaryotic cells. Bio Essays 15:249–258

    CAS  Google Scholar 

  • Weiffenbach B, Haber JE (1981) Homothallic mating-type switching generates lethal breaks in rad52 strains of Saccharomyces cerevisiae. Mol Cell Biol 6:522–534

    Google Scholar 

  • Weiler KS, Broach JR (1992) Donor locus selection during Saccharomyces cerevisiae mating-type interconversion responds to distant regulatory signals. Genetics 132: 929–942

    PubMed  CAS  Google Scholar 

  • White CI, Haber JE (1990) Intermediates of recombination during mating-type switching in Saccharomyces cerevisiae. EMBO J 9:663–673

    PubMed  CAS  Google Scholar 

  • Winge Ö (1935) On haplophase and diplophase in some Saccharomycetes. C R Trav Lab Carlsberg Sér Physiol 21:77–111

    Google Scholar 

  • Winge Ö, Roberts C (1949) A gene for diploidization in yeasts. C R Trav Lab Carlsberg Sér Physiol 24:341–346

    Google Scholar 

  • Yarrow D (1984) Saccharomyces. In: Kreger-van Rij NJW (ed) The yeasts, 3rd edn, Elsevier, Amsterdam, pp 379–395

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schmidt, H., Gutz, H. (1994). The Mating-Type Switch in Yeasts. In: Wessels, J.G.H., Meinhardt, F. (eds) Growth, Differentiation and Sexuality. The Mycota, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-11908-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-11908-2_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-11910-5

  • Online ISBN: 978-3-662-11908-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics