Early Events Associated with Sex Determination in Drosophila melanogaster

  • Lucas Sánchez
  • Pedro P. López
  • Begoña Granadino


Sex determination is the commitment of an embryo to either the female or the male developmental pathway. In Drosophila melanogaster, 2X;2A individuals (X,X chromosome; A, autosomal set) are females and XY;2A individuals (Y, Y chromosome) are males. A series of results led to the discovery that in Drosophila melanogaster sex is determined by the ratio of the X chromosomes to sets of autosomes (reviewed in Baker and Belote, 1983; Nöthiger and Steinmann-Zwicky, 1985). Firstly, XXY and XO flies are female and male, respectively. This indicates that the Y chromosome plays no role in sex determination. Secondly, gynandromorphs are sexually mosaic individuals with some portions of the body typically male and others typically female. Such individuals arise from the loss of an X chromosome during the early development of XX flies. The sharp borderline between female and male areas indicates that sex hormones do not control sexual development as a whole, but that each individual cell chooses its sex autonomously, according to its genotype. Thirdly, 2X;3A flies are mosaic individuals with male and female structures. Moreover, clones of cells with one X chromosome and one set of autosomes develop into female structures (Santamaria and Gans, 1980). This indicates that sex is not determined by the absolute number of X chromosomes but by the ratio of X chromosmes to sets of autosomes. In the 2X;3A sexual mosaics, the X:A ratio is at a threshold level between a normal female and a normal male signal. Some cells interpret this ambiguous signal as female while others interpret it as male.


Dosage Compensation Numerator Element Blastoderm Stage Maternal Product Female Lethality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bachiller, D. and Sánchez, L. (1989). Further analysis on the male-specific lethal mutations that affect dosage compensation in Drosophila melanogaster. Roux’s Arch. Del,. Biol. 198, 34–38.Google Scholar
  2. Bachiller, D. and Sanchez, L. (1991). Production of XO clones in XX females of Drosophila. Genet Res 57, 23–28.PubMedCrossRefGoogle Scholar
  3. Baker, B.S. (1989). Sex in flies: The splice of life. Nature 340, 521–524.PubMedCrossRefGoogle Scholar
  4. Baker, B.S. and Belote, J.M. (1983). Sex determination and dosage compensation in Drosophila melanogaster. Ann. Rev. Genet. 17, 345–393.PubMedCrossRefGoogle Scholar
  5. Balcells, LI., Modolell, J. and Ruiz-Gómez, M (1988). A unitary basis for different Hairy wing mutations of Drosophila melanogaster. EMBO J. 7, 3899–3906.PubMedGoogle Scholar
  6. Bell, L.R., Maine, E.M., Schedi, P. and Cline, T.W. (1988). Sex-lethal, a Drosophila sex determination switch gene, exhibits sex-specific RNA splicing and sequence similar to RNA binding proteins. Cell 55, 1037–1046.PubMedCrossRefGoogle Scholar
  7. Bell, L.R., Horabin, J. I., Schedi, P. and Cline, T.W. (1991). Positive autoregulation of Sex-lethal by alternative splicing maintains the female determined state in Drosophila. Cell 65, 229–239.PubMedCrossRefGoogle Scholar
  8. Belote, J.M. (1983). Male-specific lathal mutations of Drosophila melanogaster.Il. Parameters of gene action during male development. Genetics 105, 881–896.PubMedGoogle Scholar
  9. Benezra, R., Davis, R.L., Lockstone, D., Turner, D.L. and Weintraub, H. (1990). The protein Id: a negative regulator of the helix-loop-helix DNA binding proteins. Cell 61, 49–59.PubMedCrossRefGoogle Scholar
  10. Bier, E., Vaessin, H., Shepherd, S., Lee, K., McCall, K., Barbel, S., Ackermenn, L., Carretto, R., Uemura, T., Grell, E., Jan., L. Y. and Jan, Y. N. (1989). Searching for pattern and mutation in the Drosophila genome with a P-lacZ vector. Genes Dev. 3, 1273–1287.PubMedCrossRefGoogle Scholar
  11. Bopp, D., Bell, L.R.. Cline, T.W. and Schedl, P. (1991). Developmental distribution of female-specific Sex-lethal proteins in Drosophila melanogaster. Genes Dev 5, 403–415.PubMedCrossRefGoogle Scholar
  12. Botas, J. Moscoso del Prado, J. and Garcia-Bellido, A. (1982). Gene-dose titration analysis in the search of transregulatory genes. EMBO J. 1, 307–310.PubMedGoogle Scholar
  13. Bridges, C.B. (1921). Triploid intersexes in Drosophila melanogaster. Science 54, 252–254.PubMedCrossRefGoogle Scholar
  14. Bridges, C.B. (1925). Sex in relation to chromosomes and genes. Amer. Nat. 59, 127–137.CrossRefGoogle Scholar
  15. Brown, E.A. and Salz, H.K. (1993). The Drosophila sex determination gene snf is utilized for the establishment of the female-specific splicing pattern of Sex-lethal. Genetics 134, 801–807.Google Scholar
  16. Cabrera, C.V., Martinez-Arias, A. and Bate, M. (1987). The expression of three members of the achaete-scute complex correlates with neuroblasts segregation in Drosophila. Cell 50, 425–433.PubMedCrossRefGoogle Scholar
  17. Campuzano, S., Carramolino, L., Cabrera, C.V., Ruiz-Gómez, M., Villares, R., Boronat, A. and Modolell, J. (1985). Molecular genetics of the achaete-scute gene complex of D. melanogaster. Cell 40, 327–338.Google Scholar
  18. Campuzano, S. and Modolell, J. (1992). Patterning of the Drosophila nervous system: the achaete-scute gene complex. Trends Genet. 8, 202–208.PubMedGoogle Scholar
  19. Caudy, M., Grell, E.H., Dambly-Chaudiére, C., Ghysen, A., Jan, L.Y. and Jan, Y. N. (1988). The maternal sex determination gene daugtherless has zygotic activity necessary for the formation of peripheral neurons in Drosophila. Genes Dev 2, 843–852.PubMedCrossRefGoogle Scholar
  20. Chandra, H.S. (1985). Sex determination: A hypothesis based on noncoding DNA. Proc. Natl. Acad. Sci. USA 82, 1165–1169.PubMedCrossRefGoogle Scholar
  21. Cline, T.W. (1978). Two closely-linked mutations in Drosophila melanogaster that are lethal to opposite sexes and interact with daughterless. Genetics 90, 683–698.PubMedGoogle Scholar
  22. Cline, T.W. (1983). Functioning of the genes daughterless (da) and Sex-lethal (Sxl) in Drosophila germ cells. Genetics 104 (Suppl), s16–17.Google Scholar
  23. Cline, T.W. (1984). Autoregulatory functioning of a Drosophila gene product that establishes and maintains the sexually determined state. Genetics 107, 231–277.PubMedGoogle Scholar
  24. Cline, T.W. (1986). A female specific lethal lesion in an X-linked positive regulator of the Drosophila sex determination gene Sex-lethal. Genetics 113, 641–663.Google Scholar
  25. Cline, T.W. (1988). Evidence that “sisterless-a” and “sisterless-b” are two of several discrete “numerator elements” of the X:A sex determination signal in Drosophila that switch Sex-lethal between two alternative stable expression states. Genetics 119, 829–862.PubMedGoogle Scholar
  26. Cronmiller, C. and Cline, T.W. (1987). The Drosophila sex determination gene daugtherless has different functions in the germline versus the soma. Cell 48, 479–487.PubMedCrossRefGoogle Scholar
  27. Cubas, P., de Celis, J.F., Campuzano, S. and Modolell, J. (1991). Proneural clusters of achaete-scute espression and the generation of sensory organs in the Drosophila imaginal wing disc. Genes Dev. 5, 996–1008.PubMedCrossRefGoogle Scholar
  28. Dambly-Chaudiére, C. and Ghysen, A. (1987). Independent subpatterns of sense organs required independent genes of the achaete-scute complex in Drosophila larvae. Genes Dev. 1, 297–306.CrossRefGoogle Scholar
  29. Deshpande, G., Stukey, J. and Schedl, P. (1995). scute (sis-b) function in Drosophila sex determination. Mol Cell Biol 15: 4430–4440.Google Scholar
  30. Duffy, J.B. and Gergen, J.P. (1991). The Drosophila segmentation gene runt acts as a position-specific numerator element necessary for the uniform expression of the sex-determinating gene Sex-lethal. Genes Dev 5, 2176–2187.CrossRefGoogle Scholar
  31. Duffy, J.B., Kania, M.A. and Gergen, J.P. (1991). Expression and function of the Drosophila gene runt in early stages of neuronal development. Development 113, 1223–1230.PubMedGoogle Scholar
  32. Ellis, H.M., Apann, D.R. and Posakony, J.W. (1990). extramacrochaetae, a negative regulator of sensory organs development in Drosophila, defines a new class of helixloop-helix protein. Cell 61, 27–38.Google Scholar
  33. Erickson, J.W. and Cline, T.W. (1991). Molecular nature of the Drosophila sex determination signal and its link to neurogenesis. Science 251, 1071–1074.PubMedCrossRefGoogle Scholar
  34. Erickson, J.W. and Cline, T.W. (1993). A bZIP protein, Sisterless-a, collaborates with bHLH transcription factors early in Drosophila development to determine sex. Genes Dev. 7, 1688–1702.PubMedCrossRefGoogle Scholar
  35. Gadagkar, R., Nanjundiah, V., Joshi, N. V. and Chandra, H.S. (1982). Dosage compensation and sex determination in Drosophila: mechanism of measurement of the X/A ratio. J. Biosci. 4, 377–390.CrossRefGoogle Scholar
  36. Garcia-Bellido, A. (1979). Genetic analysis of the achaete-scute system of Drosophila melanogaster. Genetics 91, 491–520.PubMedGoogle Scholar
  37. Garrel, J. and Modolell, J. (1990). The Drosophila extramacrochaetae locus, an antagonist of proneural genes that, like these genes, encodes a helix-loop-helix protein. Cell 61, 39–48.CrossRefGoogle Scholar
  38. Gergen, J.P. and Butler, B.A. (1988). Isolation of the Drosophila segmentation gene runt and analysis of its expression during embryogenesis. Genes Dev. 2, 1179–1193.PubMedCrossRefGoogle Scholar
  39. Ghysen, A. and Dambly-Chaudiére, C. (1988). From DNA to form: the achaete-scute complex. Genes Dev. 2, 495–501.PubMedCrossRefGoogle Scholar
  40. Granadino, B., Campuzano, S. and Sanchez, L. (1990). The Drosophila melanogaster fl(2)d gene is needed for the female-specific splicing of Sex-lethal RNA. EMBO J. 9, 2597–2602.PubMedGoogle Scholar
  41. Granadino, B., Torres, M., Bachiller, D. Torroja, E., Barbero, J.L. and Sanchez L. (1991a). Genetic and molecular analysis of new female specific lethal mutations at the gene Sx1 of Drosophila melanogaster. Genetics 129, 371–383.PubMedGoogle Scholar
  42. Granadino, B., San Juan, A.B. and Sanchez, L. (1991b). The gene fl(2)d is required for various Sxl-controlled processes in Drosophila females. Roux’s Arch. Dev. Biol. 200, 172–176.CrossRefGoogle Scholar
  43. Granadino, B., San Juan, A.B., Santamarfa, P. and Sanchez, L. (1992). Evidence of a dual function in fl(2)d, a gene needed for Sex-lethal expression in Drosophila melanogaster. Genetics 130, 597–612.PubMedGoogle Scholar
  44. Granadino, B., Santamaria, P. and Sanchez, L. (1993). Sex determination in the germ line of Drosophila melanogaster: activation of the gene Sex-lethal. Development 118, 813–816.Google Scholar
  45. Hilfiker, A. and Nöthiger, R. (1991). The temperature-sensitive mutation vie (virilizer) identifies a new gene involved in sex determination of Drosophila. Roux’s Arch. Dev Biol. 200, 240–248.CrossRefGoogle Scholar
  46. Horabin, J.I. and Schedl, P. (1993a). Regulated splicing of the Drosophila Sex-lethal male exon involves a blockage mechanism. Mol. Cell. Biol. 13, 1408–1414.PubMedGoogle Scholar
  47. Horabin, J.I. and Schedi, P. (1993b). Sex-lethal autoregulation requires multiple cis-acting elements upstream and downstream of the male exon and appears to depend largely on controlling the use of the male exon 5’ splice site. Mol. Cell Biol. 13, 7734–7746.PubMedGoogle Scholar
  48. Hoshijima, K., Kohyama, A., Watakabe, I., Inoue, K., Sakamoto, H. and Shimura, Y. (1995). Transcriptional regulation of the Sex-lethal gene by helix-loop-helix proteins. Nucl. Acid Res. 23; 3441–3448.CrossRefGoogle Scholar
  49. Jiménez, F. and Campos-Ortega, J.A. (1979). On a region of the Drosophila genome necessary for central nervous system development. Nature 282, 310–312.PubMedCrossRefGoogle Scholar
  50. Kania, M.A., Bonner, A.S., Duffy, J.B. and Gergen, J.P. (1990). The Drosophila segmentation gene runt encodes a novel regulatory protein that is also expressed in the developing nervous system. Genes Dev. 4, 1701–1713.PubMedCrossRefGoogle Scholar
  51. Keyes, L.N., Cline. T.W. and Schedi, P. (1992). The primary sex determination signal of Drosophila acts at the level of transcription. Cell 68, 933–943.PubMedCrossRefGoogle Scholar
  52. Kuroda, M.I., Palmer, M.J. and Lucchesi, J.C. (1993). X chromosome dosage compensation in Drosophila. Seminars Dev. Biol. 4, 107–116.CrossRefGoogle Scholar
  53. Lehman, R. and Nusslein-Volhard, C. (1986). Abdominal segmentation, pole cell formation, and embryonic polarity requires the localized activity of oskar, a maternal gene in Drosophila. Cell 47: 141–152.CrossRefGoogle Scholar
  54. Liu, Y. and Belote, J.M. (1995). Protein-protein interactions among components of the Drosophila primary sex determination signal. Mol Gen Genet 248: 182–189.PubMedCrossRefGoogle Scholar
  55. Lucchesi, J.C. and Skripsky, T. (1981). The link between dosage compensation and sex differentiation in Drosophila melanogaster. Chromosoma 82, 217–227.PubMedCrossRefGoogle Scholar
  56. Lucchesi, J.C. and Manning, J.E. (1987). Gene dosage compensation in Drosophila melanogaster. Adv. Genet. 24, 371–429.PubMedCrossRefGoogle Scholar
  57. Maine, E.M., Salz, H.K., Cline, T.W. and Schedl, P. (1985a). The Sex-lethal of Drosophila: DNA alterations associated with sex-specific lethal mutations. Cell 43: 521–529.PubMedCrossRefGoogle Scholar
  58. Maine, E.M., Salz, H.K., Schedl, P., and Cline, T.W. (1985b). Sex-lethal, a link between sex determination and sexual differentiation in Drosophila melanogaster. Cold Spring Harbor Symp. Quant. Biol. 50; 595–604.CrossRefGoogle Scholar
  59. Marshall, T. and Whitte, J.R. (1978). Genetic analysis of the mutation female-lethal in Drosophila melanogaster. Genet. Res. 32: 103–111.PubMedCrossRefGoogle Scholar
  60. Moscoso del Prado, J. and Garcia-Bellido, A. (1984). Genetic regulation of the achaetescute complex of Drosophila melanogaster. Roux’s Arch. Devi. Biol 193, 242–245.CrossRefGoogle Scholar
  61. Murre, C., McCaw, P.S. and Baltiomore, D. (1989a). A new DNA binding and dimerization motif in inmunoglobulin enhancer binding, daugtherless, MyoD and myc proteins. Cell 56, 777–783.PubMedCrossRefGoogle Scholar
  62. Mutre, C., McCaw, P.S., Vässin, H.,Caudy M., Jan, Y.N., Cabrera, C.V., Buskin, J.N., Hauschka, S.D., Lassart, A.B., Weintraub, H. and Baltimore, D. (1989b). Interactions between heterologous helix-loop-helix proteins generate complex that bind specifically to a common DNA sequence. Cell 58, 537–544.CrossRefGoogle Scholar
  63. Nöthiger, R. and Steinmann-Zwicky, M. (1985). Sex determination in Drosophila. Trends Genet. 1, 209–215.CrossRefGoogle Scholar
  64. Nöthiger, R., Jonglez, M., Leuthold, M., Meier-Gerschwiller, P. and Weber, T. (1989). Sex determination in the germline of Drosophila depends on genetic signals and inductive somatic factors. Development 107, 505–518.PubMedGoogle Scholar
  65. Oliver, B., Perrimon, N. and Mahowald, A.P. (1988). Genetic evidence that the sans- fille locus is involved in Drosophila sex determination Genetics 120, 159–171.PubMedGoogle Scholar
  66. Parkhurst, S.M., Bopp, D. and Ish-Horowicz, D. (1990). X:A ratio, the primary sex determination signal in Drosophila, is transduced by helix-loop-helix proteins. Cell 63, 1179–1191.PubMedCrossRefGoogle Scholar
  67. Parkhurst, S.M. and Ish-Horowicz, D. (1992). Common denominators for sex. Current Biol 2, 629–631.CrossRefGoogle Scholar
  68. Parkhurst, S.M., Lipshitz, H.D. and Ish-Horowicz, D. (1993). achaete-scute feminizing activities and Drosophila sex determination. Development 117, 737–749.Google Scholar
  69. Rodriguez, I., Hernandez, R., Modolell, J. and Ruiz-Gómez, M. (1990). Competence to develop sensory organs is temporally and spatially regulated in Drosophila epidermal primordia. EMBO J. 9, 3583–3592.PubMedGoogle Scholar
  70. Romani, S., Campuzano, S. and Modolell, J. (1987). The achaete-scute complex is expressed in neurogenic regions of Drosophila embryos. EMBO J. 6, 2085–2092.PubMedGoogle Scholar
  71. Sakamoto, H., Inoue, K., Higuchi, I., Ono, Y. and Shimura, Y. (1992). Control of Drosophila Sex-lethal pre-mRNA splicing by its own female-specific product. Nucleic Acids Res 20, 5533–5540.PubMedCrossRefGoogle Scholar
  72. Salz, H.K., Maine, E.M., Keyes, L.N., Samuels, M.E., Cline, T.W. and Schedl, P. (1989). The Drosophila female-specific sex-determination gene, Sex-lethal, has stage, tissue-, and sex-specific RNAs suggesting multiple modes of regulation. Genes Dev 3, 708719.Google Scholar
  73. Salz, H.K. (1992). The genetic analysis of snf: a Drosophila sex determination gene required for activation of Sex-lethal in both the germline and the soma. Genetics 130, 547–554.PubMedGoogle Scholar
  74. Sanchez, L. and Nöthiger, R. (1982). Clonal analysis of Sex-lethal, a gene needed for female sexual development in Drosophila melanogaster. Wilhem Roux’s Arch. Dev. Biol. 191: 211–214.CrossRefGoogle Scholar
  75. Sanchez, L. and Nöthiger, R. (1983). Sex determination and dosage compensation in Drosophila melanogaster: production of male clones in XX females. EMBO J. 2, 485–491.PubMedGoogle Scholar
  76. Sanchez, L., Granadino, B. and Torres. M. (1994). Sex determination in Drosophila melanogaster: X-linked genes involved in the initial step of Sex-lethal activation. Dev. Genet. 15, 251–264.PubMedCrossRefGoogle Scholar
  77. Santamaria, P. and Gans, M. (1980). Chimeras of Drosophila melanogaster obtained by injection of haploid nuclei. Nature 287, 143–144.PubMedCrossRefGoogle Scholar
  78. Schüpbach, T. (1985). Normal female germ cell differentiation requires the female X chromosome to autosome ratio and expression of Sex-lethal in Drosophila melanogaster. Genetics 109, 529–548.PubMedGoogle Scholar
  79. Skeath, J.B. and Carroll, S.B. (1991). Regulation of achaete-scute gene expression and sensory organ pattern formation in the Drosophila wing. Genes Dev. 5, 984–995.PubMedCrossRefGoogle Scholar
  80. Steinmann-Zwicky, M. (1988). Sex determination in Drosophila: the X chromosomal gene liz is required for Sxl activity. EMBO.J. 7, 3889–3898.PubMedGoogle Scholar
  81. Steinmann-Zwicky, M. (1993). Sex determination in Drosophila: sis-b, a major numerator element of the X:A ratio in the soma, does not contribute to the X:A ratio in the germ line. Development 117, 763–767.PubMedGoogle Scholar
  82. Steinmann-Zwicky, M., Schmid, H. and Nöthiger, R. (1989). Cell-autonomous and inductive signals can determine the sex of the germ line of Drosophila by regulating the gene Sxl. Cell 57, 157–166.CrossRefGoogle Scholar
  83. Sun, X.H. and Baltimore, D. (1991). A inhibitory domain of E12 transcription factor prevents DNA binding in E12 homodimers but not in E12 heterodimers. Cell 64, 459–470.PubMedCrossRefGoogle Scholar
  84. Torres, M. and Sanchez, L. (1989). The scute (T4) gene acts as a numerator element of the X:A signal that determines the state of activity of Sex-lethal in Drosophila melanogaster. EMBO J. 10, 3079–3086.Google Scholar
  85. Tones, M and Sanchez, L. (1991). The sisterless-b function of the Drosophila gene scute is restricted to the state when the X:A ratio signal determines the activity of Sex lethal. Development 113, 715–722.Google Scholar
  86. Torres, M. and Sanchez, L. (1992). The segmentation gene runt is needed to activate Sex-lethal, a gene that controls sex determination and dosage compensation in Drosophila. Genet Res 59, 189–198.PubMedCrossRefGoogle Scholar
  87. Uenoyama, T., Uchida, S., Fukunaga, A. and Oishi, K. (1982). Studies on the Sex specific lethals of Drosophila melanogaster. IV. Gynandromorph analysis of three male-specific lethals, mle, msl-2 and mle(3) 132. Genetics 102: 223–231.Google Scholar
  88. Van Doren, M., Ellis, H. M. and Posakony, J.W. (1991). The Drosophila extramacrochaetae protein antagonize sequence-specific DNA binding by daughterless/achaete-scute protein complexes. Development 113, 245–255.PubMedGoogle Scholar
  89. Villares, R. and Cabrera, C.V. (1987). The achae-scute gene complex of D. melanogaster: conserved domains in a subset of genes required for neurogenesis and their homology to myc. Cell 50, 415–424.CrossRefGoogle Scholar
  90. Younger-Shepherd, S., Vaessin, H., Bier, E., Yeh Jan, L. and Nung Jan, Y. (1992). deadpan, an essential pan-neural gene encoding an HLH protein, acts as a denominator in Drosophila sex determination. Cell 70, 911–922.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Lucas Sánchez
    • 1
  • Pedro P. López
    • 1
  • Begoña Granadino
    • 1
  1. 1.Centro de Investigaciones BiológicasMadridSpain

Personalised recommendations