Skip to main content

Maternal Information and Genetic Control of Oogenesis in Drosophila

  • Chapter
Genome Analysis in Eukaryotes

Abstract

In Drosophila, by the time the egg is laid, it has received all the genetic information that is required: (i) for the cell divisions that will occur until gastrulation; (ii) for determining the anteroposterior and dorsoventral axes of polarity of the future embryo, and for delimiting the major morphogenetic areas—anterior, posterior and terminal; and (iii) to ensure the perennity of the species (germ cell determinants). This information is accumulated in the oocyte in the course of its development, that is to say during oogenesis, and results from the activity of the maternal genome alone. Zygotic transcription will only begin two hours after the egg is laid, in the preblastoderm stage embryo (10th division cycle).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aï-Ahmed, O., Bellon, B., Capri, M., Joblet, C., and Thomas-Delaage, M. (1992). The yemanuclein-a: a new Drosophila DNA-binding protein specific for the oocyte nucleus. Mech. Dev., 37, 69–80.

    Google Scholar 

  • Aï-Ahmed, O. Thomas-Cavallin, M., and Rosset, R. (1987). Isolation and characterization of a region of the Drosophila genome which contains a cluster of differentially expressed maternal genes (yema gene region). Dev. Biol.,122 153–162.

    Google Scholar 

  • Ambrosio, L., and Schedl, P. (1984). Gene expression during Drosophila melanogaster oogenesis: analysis by in situ hybridization to tissue sections. Dev. Biol., 105, 80–92.

    Article  PubMed  CAS  Google Scholar 

  • Belvin, M. Jin, Y., and Anderson, V. (1995). Cactus protein degradation mediates Drosophila dorso-ventral signaling. Genes Dev.,9 783–793.

    Google Scholar 

  • Berleth, T., Burri, M., Thoma, G., Bopp, D., Richstein, S., Frigerio, G., Noll, M., and Nusslein-Volhard, C. (1988). The role of localization of bicoïd RNA in organizing the anterior pattern of the Drosophila embryo. EMBO J., 7, 1749–1756.

    PubMed  CAS  Google Scholar 

  • Bohrmann, J. Frey, A., and Gutzeit, H.O. (1992). Observations on the polarity of mutant Drosophila follicles lacking the oocyte. Roux’s Arch. Dev. Biol.,201 268274.

    Google Scholar 

  • Boswell, R.E., and Mahowald, A.P. (1985). Tudor, a gene required for assembly of the germ plasm in Drosophila melanogaster. Cell, 43, 97–104.

    Article  CAS  Google Scholar 

  • Carpenter, A.T.C. (1979). Synaptonemal complex and recombination nodules in wild type Drosophila melanogaster females. Genetics, 92, 511–541.

    PubMed  CAS  Google Scholar 

  • Carpenter, A.T.C. (1994). Egalitarian and the choice of cell fates in Drosophila melanogaster oogenesis. In: “Germ line development-Ciba Foundation Symposium, (Wilzy, Chichester), 182, pp 223–254.

    Google Scholar 

  • Casanova, J. (1990). Pattern formation under the control of the terminal system in the Drosophila embryo. Development, 110, 621–628.

    PubMed  CAS  Google Scholar 

  • Casanova, J., and Struhl, G. (1993). The torso receptor localizes as well as transduces the spatial signal specifying terminal body pattern in Drosophila. Nature, 362, 152–155.

    Article  CAS  Google Scholar 

  • Casanova, J. Furriols, M., Mc Cormick, C.A., and Struhl, A. (1995). Similarities between trunk and spätzle,putative extra cellular ligands specifying body pattern in Drosophila. Genes Dev.,9 2539–2544.

    Google Scholar 

  • Chao, Y.C., Donahue, K., and Pokrywka, N. (1991). Sequence of swallow, a gene required for the localization of bicoid message in Drosophila eggs. Dev. Genet., 12, 333–341.

    Article  PubMed  CAS  Google Scholar 

  • Chou, J.B. and Perrimon, N. (1992). Use of a yeast site-specific recombinase to produce female germline chimeras in Drosophila. Genetics, 131, 643–653.

    CAS  Google Scholar 

  • Cooley, L., and Theurkauf, W. (1994). Cytoskeletal functions during Drosophila oogenesis. Science, 266, 590–596.

    Article  PubMed  CAS  Google Scholar 

  • Dickson, B. Sprenger, F., and Hafen, E. (1992). Prepattem in the developing Drosophila eye revealed by an activated torso-sevenless chimeric receptor. Genes Dev.,6 2327–2339.

    Google Scholar 

  • Doyle, H. and Bishop, J. (1993). Torso a receptor tyrosine kinase required for embryonic pattern formation, shares substrates with the sevenless and EGF-R pathways in Drosophila. Genes Dev., 7,633–646.

    Google Scholar 

  • Driever, W., and Nusslein-Volhard, C. (1988). A gradient of bicoid protein in Drosophila embryo. Cell., 54, 83–93.

    Article  PubMed  CAS  Google Scholar 

  • Ephrussi, A., and Lehmann, R. (1992). Induction of germ cell formation by oskar. Nature, 358, 387–392.

    Article  CAS  Google Scholar 

  • Fasano, L., and Kerridge, S. (1988). Monitoring positional information during oogenesis in adult Drosophila. Development, 104, 245–253.

    CAS  Google Scholar 

  • Ferrandon, D. Elphick, L., Nusslein-Volhard, C., and St Johnston, D. (1994). Staufen protein associates with 3’UTR of bicoid mRNA to form particles that move in a microtubule-dependant manner. Cell,79 1221–1232.

    Google Scholar 

  • Forlani, S., Ferrandon, D., Saget, O., and Mohier, E. (1993). A regulatory function for K10 in the establishment of dorso-ventral polarity in the Drosophila egg and embryo. Mech. Dev., 41, 109–120.

    Article  PubMed  CAS  Google Scholar 

  • Frey, A., and Gutzeit, H. (1986). Follicle cells and germline cells both affect polarity in dicephalic chimeric follicles of Drosophila. Roux’s Arch. Dev. Biol., 195, 527532.

    Google Scholar 

  • Gavis, E., and Lehmann, R. (1992). Localization of nanos RNA controls embryonic polarity. Cell, 71, 301–313.

    Article  PubMed  CAS  Google Scholar 

  • Gavis, E., and Lehmann, R. (1994). Translational regulation of nanos by RNA localization. Nature, 369, 315–318.

    Article  PubMed  CAS  Google Scholar 

  • Geigy, R. (1931). Action de I’ultraviolet sur le pôle germinal dans l’oeuf de Drosophila, Rev. Suisse Zool, 38, 187–288.

    Google Scholar 

  • Golumbeski, G.S., Bardsley, A., and Tax, F. (1991). Tudor, a posterior group gene of Drosophila melanogaster, encodes a novel protein and a messenger RNA localized during mid-oogenesis. Genes Dev., 5 2060–2070.

    CAS  Google Scholar 

  • Gonzales-Reyes, A., and St Johnston, D. (1994). Role of oocyte position in establishment of anterior-posterior polarity in Drosophila. Science, 266, 639–642.

    Article  Google Scholar 

  • Gonzales-Reyes, A., Elliot, H., and St Johnston, D. (1995). Polarization of both major body axes in Drosophila by gurken-torpedo signaling. Nature, 375, 654–658.

    Article  Google Scholar 

  • Goode, S., Wright, D. and Mahowald, A. (1992). The neurogenic locus brainiac cooperates with the Drosophila EGF receptor to establish the ovarian follicle and to determine its dorsal-ventral polarity. Development,116, 177--192.

    Google Scholar 

  • Hay, B., Jan, J.Y., and Jan, Y.N. (1990). Localization of vasa, a component of Drosophila polar granules, in maternal effect mutants that alter embryonic anterioposterior polarity. Development, 109, 425–433.

    PubMed  CAS  Google Scholar 

  • Hegner, R.W. (1911). Germ cell determinants and their significance. Amer. Nat., 45, 385–397.

    Article  Google Scholar 

  • Ilmensee, K. and Mahowald, A.P. (1974). Transplantation of posterior polar plasm in Drosophila in induction of germ cells at the anterior pole of the egg. Proc. Natl. Acad. Sci.,USA, 71 1016–1020.

    Google Scholar 

  • Irish, V., Lehmann, R., and Akam, M. (1989). The Drosophila posterior-group gene nanos functions by repressing hunchback activity. Nature, 338, 646–648.

    Article  PubMed  CAS  Google Scholar 

  • Kelley, R. (1993). Initial organization of the Drosophila dorso-ventral axis depends on an RNA-binding protein encoded by the squid gene. Genes Dev., 7, 948–960.

    Article  PubMed  CAS  Google Scholar 

  • Kim-Ha J., Kerr, K., and Mc Donald, P. (1995). Translational regulation of oskar RNA by Bruno, an ovarian RNA-binding protein is essential. Cell, 81, 403–412.

    Google Scholar 

  • Kim-Ha, J. Smith, J.L., and Mc Donald, P.M. (1991). Oskar mRNA is localized to the posterior pole of the Drosophila oocyte. Cell,66 23–34.

    Google Scholar 

  • Kim-Ha, J. Webster, P.J., and Smith, J.L. (1993). Multiple RNA regulatory elements mediate distinct steps in localization of oskar mRNA. Development,119 169–178.

    Google Scholar 

  • King, R.C. (1970). Ovarian development in Drosophila melanogaster. Academic Press, New York and London.

    Google Scholar 

  • Klinger, M., Erdelyi, M., and Szabad, J. (1988). Function of torso in determining the terminal anlagen of the Drosophila embryo. Nature, 335, 275–277.

    Article  Google Scholar 

  • Koch, E.A., and King, R.C. (1966). The origin and early differentiation of the egg chamber of Drosophila melanogaster J. Morph., 119, 283–304.

    Article  CAS  Google Scholar 

  • Lane, M.E., and Kalderon, D. (1994). RNA localization along the anteroposterior axis of the Drosophila oocyte requires PKA- mediated signal transduction to direct normal microtubule organization. Genes Dev., 8, 2986–2995.

    Article  PubMed  CAS  Google Scholar 

  • Lantz, V., Ambrosio, L., Schedl, P; (1992). The Drosophila orb gene is predicted to encode sex specific germline RNA-binding proteins and has localised transcripts in ovary and early embryos. Developement, 115, 75–88.

    CAS  Google Scholar 

  • Lasko, P.F. (1994). Molecular genetics of Drosophila oogenesis. M.B.I.U. (Molecular Biolog Intelligence Unit). R.G. Landes Company, Austin.

    Google Scholar 

  • Lasko, P.F. and Ashburner, M., (1988a). Posterior localization of vasa protein correlates with, but is not sufficient for, pole cell development. Genes Dev., 4, 905–922.

    Article  Google Scholar 

  • Lasko, P.F., and Ashburner, M. (1988b). The product of the Drosophila gene vasa is very similar to eukaryotic initiation factor-4a. Nature, 335, 611–617.

    Article  PubMed  CAS  Google Scholar 

  • Lawrence, P.E. (1992). “The making of a fly”. ( Blackwell Scientific Publications ). Oxford.

    Google Scholar 

  • Lehmann, R., and Nusslein-Volhard, C. (1986). Abdominal segmentation, pole cell formation and embryonic polarity require the localized activity of oskar a maternal gene of Drosophila. Cell, 47, 141–152.

    Article  CAS  Google Scholar 

  • Lehmann, R., and Nusslein-Volhard, C. (1991). The maternal gene nanos has a central role in posterior pattern formation of the Drosophila embryo. Development, 112, 679–692.

    PubMed  CAS  Google Scholar 

  • Lin, H., and Spradling, A.C. (1995). Fusome asymmetry and oocyte determination in Drosophila. Dev. Genet., 16, 6–12.

    Article  CAS  Google Scholar 

  • Lin, H., Yue, L., and Spradling, A.C. (1994). The Drosophila fusome, a germline specific organelle, contains membrane skeletal proteins and functions in cyst formation. Genes Dev., 120, 977–956.

    Google Scholar 

  • Lu, X., Chou, T., and Williams, N. (1993). Control of cell fate determination by p2lras/ rase, an essential component of torso signalling in Drosophila. Genes Dev., 7, 62 1632.

    Google Scholar 

  • Mahowald, A. (1971a). Polar granules of Drosophila III. The continuity of polar granules during the life cycle of Drosophila. J. Exp. Zool, 176, 329–344.

    Article  CAS  Google Scholar 

  • Mahowald, A. (1971b). Polar granules of Drosophila IV. Cytochemical studies showing loss of RNA from polar granules during early stages of embryogenesis. J. Exp. Zool, 176, 345–352.

    Article  PubMed  CAS  Google Scholar 

  • Mahowald, A.P. (1992). Germ plasm revisited and illuminated. Science, 255, 1216–1217.

    Article  PubMed  CAS  Google Scholar 

  • Mahowald, A.P., and Kambysellis, M.P. (1980) Oogenesis. In “Genetics and Biology of Drosophila”. (M. Ashburner and T.R.F. Wright, eds), Vol.2d, 141–224. Academic Press, London.

    Google Scholar 

  • Mahowald, A.P., and Strassheim, J.M. (1970). Intercellular migration of centrioles in germarium of Drosophila melanogaster. J. Cell Biol.,45, 306–320.

    Google Scholar 

  • Mahowald, A.P., Goralski, T.J. and Caulton, J.H. (1983). In vitro activation of Drosophila egg. Dev. Biol.,98 437–445.

    Google Scholar 

  • McDonald, P., Kerr, K., Smith, J.L., and Leask, A. (1993). RNA regulatory element BLE I directs the early step of bicoid mRNA localization. Development, 118, 1233–1243.

    Google Scholar 

  • McDonald, P., Luk, S., and Kilpatrick, M. (1991). Protein encoded by the exuperentia gene is concentrated at sites of bicoid messenger RNA accumulation in Drosophila nurse cells but not in oocytes or embryos. Genes Dev., 5, 2455–2466.

    Article  Google Scholar 

  • Manseau, L.J., and Schüpbach, T. (1989). Cappuccino and spire two unique loci required for both the antero-posterior and dorso ventral patterns of the Drosophila embryo. Genes Dev., 3, 1437–1452.

    CAS  Google Scholar 

  • Mc Kearin, D., and Ohlstein, B. (1995). A role for the Drosophila bag-of-marbles protein in the differentiation of cytoblasts from germline stem cells. Development, 121, 2937–2947.

    Google Scholar 

  • Mc Kearin, D. and Spradling, A. (1990). bag of marbles: a Drosophila gene required to initiate both male and female gametogenesis. Genes Dev,4 2242–2254.

    Google Scholar 

  • Mc Kun, K. Jang, J. Theurkauf, W., and Hawley, R. (1993). Mechanical basis of meiotic metaphase arrest. Nature,326 364–366.

    Google Scholar 

  • Montell, D. Keshishian, H. and Spradling, A. (1991). Laser ablation studies of the role of the Drosophila oocyte nucleus in pattern formation. Science,254 290–293.

    Google Scholar 

  • Murata, Y., and Wharton, R. (1995). Binding of pumilio to maternal hunchbach mRNA is required for posterior patterning in Drosophila embryos. Cell 80, 747–756.

    Article  PubMed  CAS  Google Scholar 

  • Neuman-Silberberg, F., and Schüpbach, T. (1994). Dorsoventral axis formation in Drosophila depends on the correct dosage of the gene gurken. Development, 120, 2457–2463.

    CAS  Google Scholar 

  • Newmark, P. and Boswell, R. (1994). The magonashi locus encodes an essential product required for germ plasm assembly in Drosophila. Development,120 1303–1313.

    Google Scholar 

  • Nusslein-Volhard, C., Frohnhöfer, H.G., and Lehmann, R. (1987). Determination of anteroposterior polarity in the Drosophila embryo. Science, 238, 1675–1681.

    Article  PubMed  CAS  Google Scholar 

  • Okada, M., Kleinman, A., and Schneiderman, H.A. (1974). Restoration of fertility in sterilized Drosophila eggs by transplantation of polar cytoplasm. Dev. Biol., 37, 43–54.

    Article  PubMed  CAS  Google Scholar 

  • Perkins, L. Larsen, I., and Perrimon, N. (1992). corkscrew encodes a putative protein tyrosine phosphatase that function to transduce the terminal signal from the receptor tyrosine torso. Cell,70 225–236.

    Google Scholar 

  • Perrimon, N., and Gans, M. (1983). Clonal analysis of the tissue specificity of recessive female sterile mutations in Drosophila melanogaster using a dominant female sterile mutation Fs (1) K1237. Dev. Biol., 100, 365–373.

    Article  CAS  Google Scholar 

  • Perrimon, N., Mohler, D., Engstrom, L., and Mahowald, A.P. (1986). X linked female sterile loci in Drosophila melanogaster. Genetics, 113, 695–712.

    CAS  Google Scholar 

  • Pokrywka, N., and Stephenson, E. (1991). Microtubules mediate the localization of bicoid mRNA during Drosophila oogenesis. Development, 113, 55–66.

    PubMed  CAS  Google Scholar 

  • Prost, E., Deryckere, F., Ross, C., Haenlin, M., Pantesco, V., and Mohier, E. (1988). Role of the oocyte nucleus in determination of the dorso-ventral polarity of Drosophila as revealed by molecular analysis of the K10 gene. Genes Dev., 2, 891–900.

    Article  PubMed  CAS  Google Scholar 

  • Ran, B., Bopp, R., and Suter, B. (1994). Null alleles reveal novel requirements for Bic-D during Drosophila oogenesis and zygotic development. Development, 120, 1233–1242.

    PubMed  CAS  Google Scholar 

  • Robinson, D.N., Cant, K., and Cooley, L. (1991). Morphogenesis of Drosophila ovarian ring canals. Development, 120, 2015–2025.

    Google Scholar 

  • Ronchi, E., Treisman, J., Dostani, N. Struhl, G., and Desplan, C. (1993). Down-regulation of the Drosophila morphogen bicoid by the torso-receptor mediated signal transduction. Cell, 74, 347–355.

    Google Scholar 

  • Roth, S., Neuman-Silberberg, S., Barcelo, G., and Schüpbach, T. (1995). cornichon and the EGF receptor signaling process are necessary for both anterior-posterior and dorsal-ventral pattern formation in Drosophila. Cell,81 967–978.

    Google Scholar 

  • Ruohola, H. Bremer, K., Baker, D., Swedlow, J. Jan, L., and Jan, Y. (1991). Role of neurogenic genes in establishment of follicle cell fate and oocyte polarity during oogenesis in Drosophila. Cell,66 433–449.

    Google Scholar 

  • Rusch, J. and Levine, M. (1994). Regulation of the dorsal morphogen by the toll and torso signaling pathways: a receptor tyrosine kinase selectively masks transcriptional repression. Genes Dev.,8 1247–1257.

    Google Scholar 

  • Sahut-Barnola, I. Godt, D., Laski, F. and Couderc, J.L. (1995). Drosophila ovary morphogenesis: analysis of terminal filament formation and identification of a gene required for this process. Dev. Biol.,170 127–135.

    Google Scholar 

  • Salles, F.J., Lieberfarle, M.E., Wreden, C., Gergen, J.P., Strickland, S. (1994). Coordinate initiation of Drosophila development by regulated polyadenylation of maternal messenger RNAs. Science, 266, 1996–1999.

    Google Scholar 

  • Savant-Bhonsale, S., and Montell, D. (1993). torso-like encodes the localized determinant of Drosophila terminal pattern formation. Genes Dev., 7, 2548–2555.

    Google Scholar 

  • Schüpbach, T. (1987). Germ line and soma cooperate during oogenesis to establish the dorso-ventral pattern of egg shell and embryo in Drosophila melanogaster. Cell, 49, 699–707.

    Article  Google Scholar 

  • Schüpbach, T. Wieschaus, E. (1991). Female sterile mutations on the second chromosome of Drosophila melanogaster II. Mutations blocking oogenesis or altering egg morphology. Genetics,129 1119–1136.

    Google Scholar 

  • Serano, T. and Cohen, R. (1995). Gratuitous mRNA localization in the Drosophila oocyte. Development,121 3013–3021.

    Google Scholar 

  • Spradling, A.C. (1993). Developmental genetics of oogenesis. In “The Development of Drosophila melanogaster” (M. Bate and Martinez-Arias A., eds), vol. 1 1–70. Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Sprenger, F., and Nüsslein-Volhard, C. (1992). torso receptor activity is regulated by a diffusible ligand produced at the extracellular terminal regions of the Drosophila egg. Cell, 71, 987–1001.

    Google Scholar 

  • Sprenger, F., Stevens, L., and Nüsslein-Volhard, C. (1989). The Drosophila gene torso encodes a putative receptor tyrosine kinase. Nature, 338, 478–483.

    Google Scholar 

  • St Johnston, D. Beuchle, D. and Nüsslein-Volhard, C. (1991). staufen a gene required to localize maternal RNAs in the Drosophila egg. Cell,65 51–63.

    Google Scholar 

  • St Johnston, D., Brown, N., and Gall, J. (1992). A conserved double-stranded RNA-binding domain. Proc. Natl. Acad. Sci. USA, 89, 10979–10983.

    Article  Google Scholar 

  • Stebbings, H. Lane, J.D. and Talbor, N.J. (1995). mRNA translocation and microtubules: insect ovary models. Trends Cell Biol.,5 361–365.

    Google Scholar 

  • Stephenson, E., and Mahowald, A. (1987). Isolation of Drosophila clones encoding maternally restricted RNAs. Dey. Biol., 124, 1–8.

    Article  CAS  Google Scholar 

  • Suter, B. and Steward, R. (1991). Requirement for phosphorylation and localization of the Bicaudal—D protein in Drosophila oocyte differentiation. Cell,67 917–926.

    Google Scholar 

  • Suter, B. Romberg, L.M., and Steward, R. (1989). Bicaudal-D,a Drosophila gene involved in developmental asymmetry: localized transcript accumulation in ovaries and sequence similarity to myosin heavy chain tail domains. Genes Dev.,3 19571968.

    Google Scholar 

  • Theurkauf, W. (1994). Premature microtubule-dependent cytoplasmic streaming in cappuccino and spire mutant oocytes. Science, 265, 2093–2096.

    Article  PubMed  CAS  Google Scholar 

  • Theurkauf, W., Alberts, B., Jan, Y., and Jongens, T. (1993). A central role for microtubules in the differenciation of Drosophila oocytes. Development, 118, 1169–1180.

    PubMed  CAS  Google Scholar 

  • Theurkauf, W., Smiley, S., Wong, M., and Alberts, B. (1992). Reorganization of the cytoskeleton during Drosophila oogenesis: implications for axis specification and intercellular transport. Development, 115, 923–936.

    PubMed  CAS  Google Scholar 

  • Wang, C., and Lehmann, R. (1991). nanos is the localized posterior determinant in Drosophila. Cell,66 637–648.

    Google Scholar 

  • Waring, G.L., Allis, C.D., and Mahowald, A.P. (1978). Isolation of polar granules and the identification of polar granulae-specific protein. Dev. Biol., 66, 197–206.

    Article  PubMed  CAS  Google Scholar 

  • Wharton, R., and Struhl, G. (1991). RNA regulatory elements mediate control of Drosophila body pattern by the posterior morphogen nanos. Cell, 67, 955–967.

    Article  CAS  Google Scholar 

  • Wieschaus, E., and Szabad, J. (1979). The development and function of the female germline in Drosophila melanogaster: a cell lineage study. Dev Biol., 68, 29–46.

    Article  PubMed  CAS  Google Scholar 

  • Wyman, R. (1979). The temporal stability of the Drosophila oocyte. J. Embryo. Exp. Morph., 50, 137–144.

    CAS  Google Scholar 

  • Xue, F., and Cooley, L. (1993). ketch encodes a component of intercellular bridges in Drosophila egg chambers. Cell, 72, 681–93.

    Google Scholar 

  • Yue, L., and Spradling, A.C. (1992). hu-litai shao, a gene required for ring canal formation during Drosophila oogenesis, encodes a homolog of adducin. Genes Dey., 6, 2443–2454.

    Google Scholar 

  • Zalokar, M. (1976). Autoradiographic study of protein and RNA formation during early development of Drosophila eggs. Dey. Biol., 49, 425–437.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Thomas-Delaage, M., Rosset, R. (1998). Maternal Information and Genetic Control of Oogenesis in Drosophila . In: Chatterjee, R.N., Sánchez, L. (eds) Genome Analysis in Eukaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-11829-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-11829-0_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-11831-3

  • Online ISBN: 978-3-662-11829-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics