Maternal Information and Genetic Control of Oogenesis in Drosophila

  • Michèle Thomas-Delaage
  • Roland Rosset


In Drosophila, by the time the egg is laid, it has received all the genetic information that is required: (i) for the cell divisions that will occur until gastrulation; (ii) for determining the anteroposterior and dorsoventral axes of polarity of the future embryo, and for delimiting the major morphogenetic areas—anterior, posterior and terminal; and (iii) to ensure the perennity of the species (germ cell determinants). This information is accumulated in the oocyte in the course of its development, that is to say during oogenesis, and results from the activity of the maternal genome alone. Zygotic transcription will only begin two hours after the egg is laid, in the preblastoderm stage embryo (10th division cycle).


Follicle Cell Nurse Cell Polar Granule Ring Canal Polar Plasm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aï-Ahmed, O., Bellon, B., Capri, M., Joblet, C., and Thomas-Delaage, M. (1992). The yemanuclein-a: a new Drosophila DNA-binding protein specific for the oocyte nucleus. Mech. Dev., 37, 69–80.Google Scholar
  2. Aï-Ahmed, O. Thomas-Cavallin, M., and Rosset, R. (1987). Isolation and characterization of a region of the Drosophila genome which contains a cluster of differentially expressed maternal genes (yema gene region). Dev. Biol.,122 153–162.Google Scholar
  3. Ambrosio, L., and Schedl, P. (1984). Gene expression during Drosophila melanogaster oogenesis: analysis by in situ hybridization to tissue sections. Dev. Biol., 105, 80–92.PubMedCrossRefGoogle Scholar
  4. Belvin, M. Jin, Y., and Anderson, V. (1995). Cactus protein degradation mediates Drosophila dorso-ventral signaling. Genes Dev.,9 783–793.Google Scholar
  5. Berleth, T., Burri, M., Thoma, G., Bopp, D., Richstein, S., Frigerio, G., Noll, M., and Nusslein-Volhard, C. (1988). The role of localization of bicoïd RNA in organizing the anterior pattern of the Drosophila embryo. EMBO J., 7, 1749–1756.PubMedGoogle Scholar
  6. Bohrmann, J. Frey, A., and Gutzeit, H.O. (1992). Observations on the polarity of mutant Drosophila follicles lacking the oocyte. Roux’s Arch. Dev. Biol.,201 268274.Google Scholar
  7. Boswell, R.E., and Mahowald, A.P. (1985). Tudor, a gene required for assembly of the germ plasm in Drosophila melanogaster. Cell, 43, 97–104.CrossRefGoogle Scholar
  8. Carpenter, A.T.C. (1979). Synaptonemal complex and recombination nodules in wild type Drosophila melanogaster females. Genetics, 92, 511–541.PubMedGoogle Scholar
  9. Carpenter, A.T.C. (1994). Egalitarian and the choice of cell fates in Drosophila melanogaster oogenesis. In: “Germ line development-Ciba Foundation Symposium, (Wilzy, Chichester), 182, pp 223–254.Google Scholar
  10. Casanova, J. (1990). Pattern formation under the control of the terminal system in the Drosophila embryo. Development, 110, 621–628.PubMedGoogle Scholar
  11. Casanova, J., and Struhl, G. (1993). The torso receptor localizes as well as transduces the spatial signal specifying terminal body pattern in Drosophila. Nature, 362, 152–155.CrossRefGoogle Scholar
  12. Casanova, J. Furriols, M., Mc Cormick, C.A., and Struhl, A. (1995). Similarities between trunk and spätzle,putative extra cellular ligands specifying body pattern in Drosophila. Genes Dev.,9 2539–2544.Google Scholar
  13. Chao, Y.C., Donahue, K., and Pokrywka, N. (1991). Sequence of swallow, a gene required for the localization of bicoid message in Drosophila eggs. Dev. Genet., 12, 333–341.PubMedCrossRefGoogle Scholar
  14. Chou, J.B. and Perrimon, N. (1992). Use of a yeast site-specific recombinase to produce female germline chimeras in Drosophila. Genetics, 131, 643–653.Google Scholar
  15. Cooley, L., and Theurkauf, W. (1994). Cytoskeletal functions during Drosophila oogenesis. Science, 266, 590–596.PubMedCrossRefGoogle Scholar
  16. Dickson, B. Sprenger, F., and Hafen, E. (1992). Prepattem in the developing Drosophila eye revealed by an activated torso-sevenless chimeric receptor. Genes Dev.,6 2327–2339.Google Scholar
  17. Doyle, H. and Bishop, J. (1993). Torso a receptor tyrosine kinase required for embryonic pattern formation, shares substrates with the sevenless and EGF-R pathways in Drosophila. Genes Dev., 7,633–646.Google Scholar
  18. Driever, W., and Nusslein-Volhard, C. (1988). A gradient of bicoid protein in Drosophila embryo. Cell., 54, 83–93.PubMedCrossRefGoogle Scholar
  19. Ephrussi, A., and Lehmann, R. (1992). Induction of germ cell formation by oskar. Nature, 358, 387–392.CrossRefGoogle Scholar
  20. Fasano, L., and Kerridge, S. (1988). Monitoring positional information during oogenesis in adult Drosophila. Development, 104, 245–253.Google Scholar
  21. Ferrandon, D. Elphick, L., Nusslein-Volhard, C., and St Johnston, D. (1994). Staufen protein associates with 3’UTR of bicoid mRNA to form particles that move in a microtubule-dependant manner. Cell,79 1221–1232.Google Scholar
  22. Forlani, S., Ferrandon, D., Saget, O., and Mohier, E. (1993). A regulatory function for K10 in the establishment of dorso-ventral polarity in the Drosophila egg and embryo. Mech. Dev., 41, 109–120.PubMedCrossRefGoogle Scholar
  23. Frey, A., and Gutzeit, H. (1986). Follicle cells and germline cells both affect polarity in dicephalic chimeric follicles of Drosophila. Roux’s Arch. Dev. Biol., 195, 527532.Google Scholar
  24. Gavis, E., and Lehmann, R. (1992). Localization of nanos RNA controls embryonic polarity. Cell, 71, 301–313.PubMedCrossRefGoogle Scholar
  25. Gavis, E., and Lehmann, R. (1994). Translational regulation of nanos by RNA localization. Nature, 369, 315–318.PubMedCrossRefGoogle Scholar
  26. Geigy, R. (1931). Action de I’ultraviolet sur le pôle germinal dans l’oeuf de Drosophila, Rev. Suisse Zool, 38, 187–288.Google Scholar
  27. Golumbeski, G.S., Bardsley, A., and Tax, F. (1991). Tudor, a posterior group gene of Drosophila melanogaster, encodes a novel protein and a messenger RNA localized during mid-oogenesis. Genes Dev., 5 2060–2070.Google Scholar
  28. Gonzales-Reyes, A., and St Johnston, D. (1994). Role of oocyte position in establishment of anterior-posterior polarity in Drosophila. Science, 266, 639–642.CrossRefGoogle Scholar
  29. Gonzales-Reyes, A., Elliot, H., and St Johnston, D. (1995). Polarization of both major body axes in Drosophila by gurken-torpedo signaling. Nature, 375, 654–658.CrossRefGoogle Scholar
  30. Goode, S., Wright, D. and Mahowald, A. (1992). The neurogenic locus brainiac cooperates with the Drosophila EGF receptor to establish the ovarian follicle and to determine its dorsal-ventral polarity. Development,116, 177--192.Google Scholar
  31. Hay, B., Jan, J.Y., and Jan, Y.N. (1990). Localization of vasa, a component of Drosophila polar granules, in maternal effect mutants that alter embryonic anterioposterior polarity. Development, 109, 425–433.PubMedGoogle Scholar
  32. Hegner, R.W. (1911). Germ cell determinants and their significance. Amer. Nat., 45, 385–397.CrossRefGoogle Scholar
  33. Ilmensee, K. and Mahowald, A.P. (1974). Transplantation of posterior polar plasm in Drosophila in induction of germ cells at the anterior pole of the egg. Proc. Natl. Acad. Sci.,USA, 71 1016–1020.Google Scholar
  34. Irish, V., Lehmann, R., and Akam, M. (1989). The Drosophila posterior-group gene nanos functions by repressing hunchback activity. Nature, 338, 646–648.PubMedCrossRefGoogle Scholar
  35. Kelley, R. (1993). Initial organization of the Drosophila dorso-ventral axis depends on an RNA-binding protein encoded by the squid gene. Genes Dev., 7, 948–960.PubMedCrossRefGoogle Scholar
  36. Kim-Ha J., Kerr, K., and Mc Donald, P. (1995). Translational regulation of oskar RNA by Bruno, an ovarian RNA-binding protein is essential. Cell, 81, 403–412.Google Scholar
  37. Kim-Ha, J. Smith, J.L., and Mc Donald, P.M. (1991). Oskar mRNA is localized to the posterior pole of the Drosophila oocyte. Cell,66 23–34.Google Scholar
  38. Kim-Ha, J. Webster, P.J., and Smith, J.L. (1993). Multiple RNA regulatory elements mediate distinct steps in localization of oskar mRNA. Development,119 169–178.Google Scholar
  39. King, R.C. (1970). Ovarian development in Drosophila melanogaster. Academic Press, New York and London.Google Scholar
  40. Klinger, M., Erdelyi, M., and Szabad, J. (1988). Function of torso in determining the terminal anlagen of the Drosophila embryo. Nature, 335, 275–277.CrossRefGoogle Scholar
  41. Koch, E.A., and King, R.C. (1966). The origin and early differentiation of the egg chamber of Drosophila melanogaster J. Morph., 119, 283–304.CrossRefGoogle Scholar
  42. Lane, M.E., and Kalderon, D. (1994). RNA localization along the anteroposterior axis of the Drosophila oocyte requires PKA- mediated signal transduction to direct normal microtubule organization. Genes Dev., 8, 2986–2995.PubMedCrossRefGoogle Scholar
  43. Lantz, V., Ambrosio, L., Schedl, P; (1992). The Drosophila orb gene is predicted to encode sex specific germline RNA-binding proteins and has localised transcripts in ovary and early embryos. Developement, 115, 75–88.Google Scholar
  44. Lasko, P.F. (1994). Molecular genetics of Drosophila oogenesis. M.B.I.U. (Molecular Biolog Intelligence Unit). R.G. Landes Company, Austin.Google Scholar
  45. Lasko, P.F. and Ashburner, M., (1988a). Posterior localization of vasa protein correlates with, but is not sufficient for, pole cell development. Genes Dev., 4, 905–922.CrossRefGoogle Scholar
  46. Lasko, P.F., and Ashburner, M. (1988b). The product of the Drosophila gene vasa is very similar to eukaryotic initiation factor-4a. Nature, 335, 611–617.PubMedCrossRefGoogle Scholar
  47. Lawrence, P.E. (1992). “The making of a fly”. ( Blackwell Scientific Publications ). Oxford.Google Scholar
  48. Lehmann, R., and Nusslein-Volhard, C. (1986). Abdominal segmentation, pole cell formation and embryonic polarity require the localized activity of oskar a maternal gene of Drosophila. Cell, 47, 141–152.CrossRefGoogle Scholar
  49. Lehmann, R., and Nusslein-Volhard, C. (1991). The maternal gene nanos has a central role in posterior pattern formation of the Drosophila embryo. Development, 112, 679–692.PubMedGoogle Scholar
  50. Lin, H., and Spradling, A.C. (1995). Fusome asymmetry and oocyte determination in Drosophila. Dev. Genet., 16, 6–12.CrossRefGoogle Scholar
  51. Lin, H., Yue, L., and Spradling, A.C. (1994). The Drosophila fusome, a germline specific organelle, contains membrane skeletal proteins and functions in cyst formation. Genes Dev., 120, 977–956.Google Scholar
  52. Lu, X., Chou, T., and Williams, N. (1993). Control of cell fate determination by p2lras/ rase, an essential component of torso signalling in Drosophila. Genes Dev., 7, 62 1632.Google Scholar
  53. Mahowald, A. (1971a). Polar granules of Drosophila III. The continuity of polar granules during the life cycle of Drosophila. J. Exp. Zool, 176, 329–344.CrossRefGoogle Scholar
  54. Mahowald, A. (1971b). Polar granules of Drosophila IV. Cytochemical studies showing loss of RNA from polar granules during early stages of embryogenesis. J. Exp. Zool, 176, 345–352.PubMedCrossRefGoogle Scholar
  55. Mahowald, A.P. (1992). Germ plasm revisited and illuminated. Science, 255, 1216–1217.PubMedCrossRefGoogle Scholar
  56. Mahowald, A.P., and Kambysellis, M.P. (1980) Oogenesis. In “Genetics and Biology of Drosophila”. (M. Ashburner and T.R.F. Wright, eds), Vol.2d, 141–224. Academic Press, London.Google Scholar
  57. Mahowald, A.P., and Strassheim, J.M. (1970). Intercellular migration of centrioles in germarium of Drosophila melanogaster. J. Cell Biol.,45, 306–320.Google Scholar
  58. Mahowald, A.P., Goralski, T.J. and Caulton, J.H. (1983). In vitro activation of Drosophila egg. Dev. Biol.,98 437–445.Google Scholar
  59. McDonald, P., Kerr, K., Smith, J.L., and Leask, A. (1993). RNA regulatory element BLE I directs the early step of bicoid mRNA localization. Development, 118, 1233–1243.Google Scholar
  60. McDonald, P., Luk, S., and Kilpatrick, M. (1991). Protein encoded by the exuperentia gene is concentrated at sites of bicoid messenger RNA accumulation in Drosophila nurse cells but not in oocytes or embryos. Genes Dev., 5, 2455–2466.CrossRefGoogle Scholar
  61. Manseau, L.J., and Schüpbach, T. (1989). Cappuccino and spire two unique loci required for both the antero-posterior and dorso ventral patterns of the Drosophila embryo. Genes Dev., 3, 1437–1452.Google Scholar
  62. Mc Kearin, D., and Ohlstein, B. (1995). A role for the Drosophila bag-of-marbles protein in the differentiation of cytoblasts from germline stem cells. Development, 121, 2937–2947.Google Scholar
  63. Mc Kearin, D. and Spradling, A. (1990). bag of marbles: a Drosophila gene required to initiate both male and female gametogenesis. Genes Dev,4 2242–2254.Google Scholar
  64. Mc Kun, K. Jang, J. Theurkauf, W., and Hawley, R. (1993). Mechanical basis of meiotic metaphase arrest. Nature,326 364–366.Google Scholar
  65. Montell, D. Keshishian, H. and Spradling, A. (1991). Laser ablation studies of the role of the Drosophila oocyte nucleus in pattern formation. Science,254 290–293.Google Scholar
  66. Murata, Y., and Wharton, R. (1995). Binding of pumilio to maternal hunchbach mRNA is required for posterior patterning in Drosophila embryos. Cell 80, 747–756.PubMedCrossRefGoogle Scholar
  67. Neuman-Silberberg, F., and Schüpbach, T. (1994). Dorsoventral axis formation in Drosophila depends on the correct dosage of the gene gurken. Development, 120, 2457–2463.Google Scholar
  68. Newmark, P. and Boswell, R. (1994). The magonashi locus encodes an essential product required for germ plasm assembly in Drosophila. Development,120 1303–1313.Google Scholar
  69. Nusslein-Volhard, C., Frohnhöfer, H.G., and Lehmann, R. (1987). Determination of anteroposterior polarity in the Drosophila embryo. Science, 238, 1675–1681.PubMedCrossRefGoogle Scholar
  70. Okada, M., Kleinman, A., and Schneiderman, H.A. (1974). Restoration of fertility in sterilized Drosophila eggs by transplantation of polar cytoplasm. Dev. Biol., 37, 43–54.PubMedCrossRefGoogle Scholar
  71. Perkins, L. Larsen, I., and Perrimon, N. (1992). corkscrew encodes a putative protein tyrosine phosphatase that function to transduce the terminal signal from the receptor tyrosine torso. Cell,70 225–236.Google Scholar
  72. Perrimon, N., and Gans, M. (1983). Clonal analysis of the tissue specificity of recessive female sterile mutations in Drosophila melanogaster using a dominant female sterile mutation Fs (1) K1237. Dev. Biol., 100, 365–373.CrossRefGoogle Scholar
  73. Perrimon, N., Mohler, D., Engstrom, L., and Mahowald, A.P. (1986). X linked female sterile loci in Drosophila melanogaster. Genetics, 113, 695–712.Google Scholar
  74. Pokrywka, N., and Stephenson, E. (1991). Microtubules mediate the localization of bicoid mRNA during Drosophila oogenesis. Development, 113, 55–66.PubMedGoogle Scholar
  75. Prost, E., Deryckere, F., Ross, C., Haenlin, M., Pantesco, V., and Mohier, E. (1988). Role of the oocyte nucleus in determination of the dorso-ventral polarity of Drosophila as revealed by molecular analysis of the K10 gene. Genes Dev., 2, 891–900.PubMedCrossRefGoogle Scholar
  76. Ran, B., Bopp, R., and Suter, B. (1994). Null alleles reveal novel requirements for Bic-D during Drosophila oogenesis and zygotic development. Development, 120, 1233–1242.PubMedGoogle Scholar
  77. Robinson, D.N., Cant, K., and Cooley, L. (1991). Morphogenesis of Drosophila ovarian ring canals. Development, 120, 2015–2025.Google Scholar
  78. Ronchi, E., Treisman, J., Dostani, N. Struhl, G., and Desplan, C. (1993). Down-regulation of the Drosophila morphogen bicoid by the torso-receptor mediated signal transduction. Cell, 74, 347–355.Google Scholar
  79. Roth, S., Neuman-Silberberg, S., Barcelo, G., and Schüpbach, T. (1995). cornichon and the EGF receptor signaling process are necessary for both anterior-posterior and dorsal-ventral pattern formation in Drosophila. Cell,81 967–978.Google Scholar
  80. Ruohola, H. Bremer, K., Baker, D., Swedlow, J. Jan, L., and Jan, Y. (1991). Role of neurogenic genes in establishment of follicle cell fate and oocyte polarity during oogenesis in Drosophila. Cell,66 433–449.Google Scholar
  81. Rusch, J. and Levine, M. (1994). Regulation of the dorsal morphogen by the toll and torso signaling pathways: a receptor tyrosine kinase selectively masks transcriptional repression. Genes Dev.,8 1247–1257.Google Scholar
  82. Sahut-Barnola, I. Godt, D., Laski, F. and Couderc, J.L. (1995). Drosophila ovary morphogenesis: analysis of terminal filament formation and identification of a gene required for this process. Dev. Biol.,170 127–135.Google Scholar
  83. Salles, F.J., Lieberfarle, M.E., Wreden, C., Gergen, J.P., Strickland, S. (1994). Coordinate initiation of Drosophila development by regulated polyadenylation of maternal messenger RNAs. Science, 266, 1996–1999.Google Scholar
  84. Savant-Bhonsale, S., and Montell, D. (1993). torso-like encodes the localized determinant of Drosophila terminal pattern formation. Genes Dev., 7, 2548–2555.Google Scholar
  85. Schüpbach, T. (1987). Germ line and soma cooperate during oogenesis to establish the dorso-ventral pattern of egg shell and embryo in Drosophila melanogaster. Cell, 49, 699–707.CrossRefGoogle Scholar
  86. Schüpbach, T. Wieschaus, E. (1991). Female sterile mutations on the second chromosome of Drosophila melanogaster II. Mutations blocking oogenesis or altering egg morphology. Genetics,129 1119–1136.Google Scholar
  87. Serano, T. and Cohen, R. (1995). Gratuitous mRNA localization in the Drosophila oocyte. Development,121 3013–3021.Google Scholar
  88. Spradling, A.C. (1993). Developmental genetics of oogenesis. In “The Development of Drosophila melanogaster” (M. Bate and Martinez-Arias A., eds), vol. 1 1–70. Cold Spring Harbor Laboratory Press.Google Scholar
  89. Sprenger, F., and Nüsslein-Volhard, C. (1992). torso receptor activity is regulated by a diffusible ligand produced at the extracellular terminal regions of the Drosophila egg. Cell, 71, 987–1001.Google Scholar
  90. Sprenger, F., Stevens, L., and Nüsslein-Volhard, C. (1989). The Drosophila gene torso encodes a putative receptor tyrosine kinase. Nature, 338, 478–483.Google Scholar
  91. St Johnston, D. Beuchle, D. and Nüsslein-Volhard, C. (1991). staufen a gene required to localize maternal RNAs in the Drosophila egg. Cell,65 51–63.Google Scholar
  92. St Johnston, D., Brown, N., and Gall, J. (1992). A conserved double-stranded RNA-binding domain. Proc. Natl. Acad. Sci. USA, 89, 10979–10983.CrossRefGoogle Scholar
  93. Stebbings, H. Lane, J.D. and Talbor, N.J. (1995). mRNA translocation and microtubules: insect ovary models. Trends Cell Biol.,5 361–365.Google Scholar
  94. Stephenson, E., and Mahowald, A. (1987). Isolation of Drosophila clones encoding maternally restricted RNAs. Dey. Biol., 124, 1–8.CrossRefGoogle Scholar
  95. Suter, B. and Steward, R. (1991). Requirement for phosphorylation and localization of the Bicaudal—D protein in Drosophila oocyte differentiation. Cell,67 917–926.Google Scholar
  96. Suter, B. Romberg, L.M., and Steward, R. (1989). Bicaudal-D,a Drosophila gene involved in developmental asymmetry: localized transcript accumulation in ovaries and sequence similarity to myosin heavy chain tail domains. Genes Dev.,3 19571968.Google Scholar
  97. Theurkauf, W. (1994). Premature microtubule-dependent cytoplasmic streaming in cappuccino and spire mutant oocytes. Science, 265, 2093–2096.PubMedCrossRefGoogle Scholar
  98. Theurkauf, W., Alberts, B., Jan, Y., and Jongens, T. (1993). A central role for microtubules in the differenciation of Drosophila oocytes. Development, 118, 1169–1180.PubMedGoogle Scholar
  99. Theurkauf, W., Smiley, S., Wong, M., and Alberts, B. (1992). Reorganization of the cytoskeleton during Drosophila oogenesis: implications for axis specification and intercellular transport. Development, 115, 923–936.PubMedGoogle Scholar
  100. Wang, C., and Lehmann, R. (1991). nanos is the localized posterior determinant in Drosophila. Cell,66 637–648.Google Scholar
  101. Waring, G.L., Allis, C.D., and Mahowald, A.P. (1978). Isolation of polar granules and the identification of polar granulae-specific protein. Dev. Biol., 66, 197–206.PubMedCrossRefGoogle Scholar
  102. Wharton, R., and Struhl, G. (1991). RNA regulatory elements mediate control of Drosophila body pattern by the posterior morphogen nanos. Cell, 67, 955–967.CrossRefGoogle Scholar
  103. Wieschaus, E., and Szabad, J. (1979). The development and function of the female germline in Drosophila melanogaster: a cell lineage study. Dev Biol., 68, 29–46.PubMedCrossRefGoogle Scholar
  104. Wyman, R. (1979). The temporal stability of the Drosophila oocyte. J. Embryo. Exp. Morph., 50, 137–144.Google Scholar
  105. Xue, F., and Cooley, L. (1993). ketch encodes a component of intercellular bridges in Drosophila egg chambers. Cell, 72, 681–93.Google Scholar
  106. Yue, L., and Spradling, A.C. (1992). hu-litai shao, a gene required for ring canal formation during Drosophila oogenesis, encodes a homolog of adducin. Genes Dey., 6, 2443–2454.Google Scholar
  107. Zalokar, M. (1976). Autoradiographic study of protein and RNA formation during early development of Drosophila eggs. Dey. Biol., 49, 425–437.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Michèle Thomas-Delaage
    • 1
  • Roland Rosset
    • 1
  1. 1.Laboratoire de Génétique et Physiologie du Dévelopement IBDMParc Scientifique de Luminy, CNRS Case 907Marseille, Cedex 9France

Personalised recommendations