The Post-Newtonian Approximation

  • Norbert Straumann
Part of the Texts and Monographs in Physics book series (TMP)


The study of the motion of multiple isolated bodies under their mutual gravitational interaction and of the accompanying emission of gravitational radiation is obviously of great astrophysical interest. The first investigations on this subject by Einstein, Droste, de Sitter and others were made very soon after the completion of GR. Since then a vast amount of work has been invested to tackle the problems of motion and gravitational radiation of isolated systems (for an instructive review see [123]). For testing GR, and applying it to interesting astrophysical systems, such as binary systems of neutron stars and black holes, we need analytical approximations and reliable numerical methods to construct global, asymptotically flat solutions of the coupled field and matter equations, satisfying some intuitively obvious properties: The matter distributions should describe a system of celestical bodies (planets, white dwarfs, neutron stars, ...), and there should be no relevant incoming gravitational radiation. It goes without saying that this is a formidable task.


Neutron Star Gauge Condition Gravitational Radiation Null Cone Radial Velocity Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 158.
    J.L. Provencal, H.L. Shpiman, E. Hog and P. Thejll, Astrophys. 494, 759 (1998)ADSCrossRefGoogle Scholar
  2. 159.
    L.D. Landau, Phys. Z. Sowjetunion 1, 285 (1932)Google Scholar
  3. 160.
    N. Straumann, Physics of Type II Supernova Explosions. In: H. Mitter and F. Widder (eds.), Particle Physics and Astrophysics, Current Viewpoints. Springer-Verlag 1983Google Scholar
  4. 161.
    H.A. Bethe, Rev. Mod. Phys. 62, 801 (1990)CrossRefGoogle Scholar
  5. 162.
    J.R. Oppenheimer and G.M. Volkoff Phys. Rev 55, 374 (1939)ADSzbMATHCrossRefGoogle Scholar
  6. 163.
    H. Heiselberg and V. Pandharipande, Ann. Rev. Nucl. and Part. Science 50, 481–524 (2000)ADSCrossRefGoogle Scholar
  7. 164.
    S. Balberg and S.L. Shapiro, The Properties of Matter in White Dwarfs and Neutron Stars; astro-ph/0004317Google Scholar
  8. 165.
    R.B. Wiringa, V.G.J. Stoks and R. Schiavilla, Phys. Rev. C53, R1483 (1996)Google Scholar
  9. 166.
    A. Akmal and V.R. Pandharipande, Phys. Rev. C 56, 2261 (1997)Google Scholar
  10. 167.
    J.L. Forest, V.R. Pandharipande and J.L. Friar, Phys. Rev. C 52, 568 (1995)Google Scholar
  11. 168.
    A. Akmal, V.R. Pandharipande and R. Ravenhall, Phys. Rev. C 58, 1804 (1998)Google Scholar
  12. 169.
    H. Heiselberg and M. Hjorth-Jensen, Phys. Rep. 328, 237 (2000)ADSCrossRefGoogle Scholar
  13. 170.
    F.M. Walter and L.D. Mathews, Nature 389, 358 (1997)ADSCrossRefGoogle Scholar
  14. 171.
    D. Kramer, H. Stephani, M. MacCallum and E. Herlt, Exact Solutions of Einstein’s Field Equations. Cambridge Monographs on Mathematical Physics 2003Google Scholar
  15. 172.
    M. Ansorg, A. Leinwächter and R. Meinel, Astron. Astrophys., 381 L49 (2002)ADSzbMATHCrossRefGoogle Scholar
  16. 173.
    D.G. Yakovlev, A.D. Kaminker, O.Y. Gnedin and P. Haensel, Neutrino Emission from Neutron Stars, Phys. Rept. 354, 1 (2001); astro-ph/0012122Google Scholar
  17. 174.
    H.-Th. Janka, K. Kifonidis and M. Rampp, Supernova Explosions and Neutron Star Formation. In: (eds.) Proc. of International Workshop on Physics of Neutron Star Interiors, Trento 2000. Springer Lecture Notes in Physics, Vol. 578, Springer Berlin 2001Google Scholar
  18. 175.
    K.S. Thorne, The General Relativistic Theory of Stellar Structure and Dynamics. In: C. DeWitt, E. Schatzmann and P. Veron (eds.), High Energy Astrophysics. Gardon and Breach 1967Google Scholar
  19. 176.
    G. Baym et al., Nucl. Phys. A 175, 225 (1971); Astrophys. J. 170, 99 (1972)Google Scholar
  20. 177.
    E. Flowers and N. Itoh, Astrophys. J. 206, 21 (1976)ADSCrossRefGoogle Scholar
  21. 178.
    S. Ayasli and P.C. Joss, Astrophys. J. 256, 63 (1982)ADSCrossRefGoogle Scholar
  22. 179.
    P. Giannone and A. Weigert, Zs. f. Ap. 67, 41 (1967)ADSGoogle Scholar
  23. 180.
    T.M. Tauris and E.P.J. van den Heuvel, Formation and Evolution of Compact Stellar X-ray Sources. In: W.H.G. Lewin and M. van der Klis (eds.), Compact Stellar X-Ray Sources. Cambridge University Press (in preparation); astroph/0303456Google Scholar
  24. 181.
    W.H.G. Lewin and M. van der Klis, Compact Stellar X-Ray Sources. Cambridge University Press (in preparation)Google Scholar
  25. 182.
    E.P.J. van den Heuvel, M. Livio and S.N. Shore, Interacting Binaries, Saas-Fee Advanced Course 22 (1994), Swiss Society for Astrophysics and AstronomyGoogle Scholar
  26. 183.
    S. Chandrasekhar, Phil. Mag. 11, 592 (1931); Astrophys. J. 74, 81 (1931)ADSzbMATHCrossRefGoogle Scholar
  27. 184.
    S. Chandrasekhar, Observatory 57, 373 (1934)ADSGoogle Scholar
  28. 185.
    R.H. Fowler, Mon. Not. R. Astron. Soc., 87, 114 (1926)Google Scholar
  29. 186.
    B. Paczynski, Ann. Rev. Astron. Astrophys. 9, 183 (1971)ADSCrossRefGoogle Scholar
  30. 187.
    R. Schoen and S.-T. Yau, Comm. Math. Phys. 90, 575 (1983)MathSciNetADSzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Norbert Straumann
    • 1
  1. 1.Institut für Theoretische PhysikUniversität ZurichZurichSwitzerland

Personalised recommendations