Advertisement

Weak Gravitational Fields

  • Norbert Straumann
Part of the Texts and Monographs in Physics book series (TMP)

Abstract

Most gravitational fields encountered in the physical universe are weak. Exceptions are the strong fields near compact objects (black holes and neutron stars) or in the very early universe. It is remarkable that Einstein investigated weak gravitational fields quite exhaustibly only one month after his first systematic exposition of GR (see [58]). Because of a computational error in his derivation of the so-called quadrupole formula for the power, emitted by a material source in the form of gravitational waves1, he took the subject up again somewhat later and added some important considerations (see [59]).

Keywords

Neutron Star Gauge Transformation Gravitational Wave Gravitational Radiation Binary Star System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 123.
    T. Damour, The Problem of Motion in Newtonian and Einsteinian Gravity. In: S.W. Hawking and W. Israel (eds.), 300 Years of Gravitation. Cambridge University Press, London 1987Google Scholar
  2. 124.
    R. Penrose, The Light Cone at Infinity. In: L. Infeld (ed.), Relativistic Theories of Gravitation. Pergamon Press, Oxford 1964Google Scholar
  3. 125.
    H. Friedrich, Conformal Einstein Evolution. In: J. Frauendiener and H. Friedrich (eds.), The Conformal Structure of Spacetime. Springer-Verlag, Berlin Heidelberg 2002Google Scholar
  4. 126.
    J. Frauendiener, Conformal Infinity, Living Reviews in Relativity, 3, 2000; http://www.livingreviews.org/Articles/Volume3/2000–4frauendiener/. Google Scholar
  5. 127.
    H. Friedrich, Proc. Roy. Soc. London A378, 401 (1981)Google Scholar
  6. 128.
    H. Bondi, M.G.J. Van der Burg and A.W.K. Metzner, Proc. Roy. Soc. London A289, 21 (1962)Google Scholar
  7. 129.
    J. Nester and W. Israel, Phys. Lett. 85A, 259 (1981)MathSciNetCrossRefGoogle Scholar
  8. 130.
    A. Ashtekar and A. Magnon-Ashtekar, Phys. Rev. Lett. 43, 181 (1979)MathSciNetADSCrossRefGoogle Scholar
  9. 131.
    L. Blanchet, T. Damour and G. Schäfer, MNRAS 242, 289 (1990)ADSMATHGoogle Scholar
  10. 132.
    S. Chandrasekhar, Astrophys. J. 142, 1488 (1965)MathSciNetADSCrossRefGoogle Scholar
  11. 133.
    T. Damour, Gravitational Radiation and the Motion of Compact Bodies. In: N. Deruelle and T. Piran (eds.), Gravitational Radiation. North-Holland, Amsterdam 1983Google Scholar
  12. 134.
    L. Blanchet, Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries, Living Reviews in Relativity, 5, 2002; http://www.livingreviews.org/Articles/Volume/2002–3Blanchet/. Google Scholar
  13. 135.
    M.E. Pati and C.M. Will, Phys. Rev. D 62, 124015 (2000)Google Scholar
  14. 136.
    M.E. Pati and C.M. Will, Phys. Rev. D 65, 104008 (2002); gr-qc/0201001Google Scholar
  15. 137.
    G. Schäfer, Gen. Relativ. Gravit. 18, 255 (1986)ADSCrossRefGoogle Scholar
  16. 138.
    T. Damour, P. Jaranowski and G. Schäfer, Pys. Rev. D 62, 021501 (2000)Google Scholar
  17. 139.
    T. Damour, Gravitational Radiation Reaction in the Binary Pulsar and the Quadrupole Formula Controversy. In: S. Benenti, M. Ferraris and M. Francavighia (eds.), Proceedings of Journées Relativistes 1983. Pitagora Editrice 1985; Phys. Rev. Lett. 51, 1019 (1983)Google Scholar
  18. 140.
    R.A. Hulse and J.H. Taylor, Astropys. J. 195, L 51 (1975)Google Scholar
  19. 141.
    J.H. Taylor, Millisecond pulsars: Natur’s mos stable clocks Proc. IEEE 79, 1054 (1991)CrossRefGoogle Scholar
  20. 142.
    C.M. Will, Ann. Phys. 155, 133 (1984)CrossRefGoogle Scholar
  21. 143.
    R. Blandford and S.A. Teukolsky, Astrophys. J. 205, 580 (1976)ADSCrossRefGoogle Scholar
  22. 144.
    T. Damour and N. Deruelle, Ann. Inst. H. Poincaré (Physique Théorique) 43, 107 (1985)MathSciNetMATHGoogle Scholar
  23. 145.
    T. Damour and N. Deruelle, Ann. Inst. H. Poincaré (Physique Théorique) 44, 263 (1986)MathSciNetMATHGoogle Scholar
  24. 146.
    T. Damour and J.H. Taylor, Phys. Rev. D 45, 1840 (1992)Google Scholar
  25. 147.
    J.H. Taylor, Phil. Trans. R. Soc. A 341, 117 (1992)Google Scholar
  26. 148.
    J.M. Weisberg and J.H. Taylor, The Relativistic Binary Pulsar B 1913+16. In: D.J. Nice and S.E. Thorsett (eds.), Proceedings of Binary Pulsars, Chania, Crete 2002 ASP Conference Series; astro-ph/0211217Google Scholar
  27. 149.
    T. Damour and J.H. Taylor, Astrophys. J. 366, 501 (1991)ADSCrossRefGoogle Scholar
  28. 150.
    L.L. Smarr and R. Blandford, Astrophys. J. 207 574 (1976)ADSCrossRefGoogle Scholar
  29. 151.
    A. Wolszczan, Nature 350, 688 (1991)ADSCrossRefGoogle Scholar
  30. 152.
    I.H. Stairs, S.E. Thorsett, J.H. Taylor and A. Wolszczan, Astrophys. J. 581, 501 (2002); astro-ph/0208357Google Scholar
  31. 153.
    I.H. Stairs, E.M. Splaver, S.E. Thorsett, D.J. Nice and J.H. Taylor, MNRAS 314, 459 (2000)ADSCrossRefGoogle Scholar
  32. 154.
    J.H. Taylor and J.M. Cordes, Astrophys. J. 411, 674 (1993)ADSCrossRefGoogle Scholar
  33. 155.
    T. Damour and G. Esposito-Farèse, Phys. Rev D 54, 1474 (1996); D 58, 042001 (1998)Google Scholar
  34. 156.
    A.G. Lyne, et al., Science 303, 1153 (2004)ADSCrossRefGoogle Scholar
  35. 157.
    M. Burgay, et al., Nature 426, 531 (2003)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Norbert Straumann
    • 1
  1. 1.Institut für Theoretische PhysikUniversität ZurichZurichSwitzerland

Personalised recommendations