Advertisement

Einstein’s Field Equations

  • Norbert Straumann
Part of the Texts and Monographs in Physics book series (TMP)

Abstract

In the previous chapter we examined the kinematical framework of the general theory of relativity and the effect of gravitational fields on physical systems. The hard core of the theory, however, consists of Einstein’s field equations, which relate the metric field to matter. After a discussion of the physical meaning of the curvature tensor, we shall first give a simple physical motivation for the field equations and will then show that they are determined by only a few natural requirements’.

Keywords

Riemann Tensor Lorentz Manifold Spacelike Hypersurface Cauchy Surface Einstein Tensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 97.
    R.A. Hulse, Rev. Mod. Phys. 66, 699 (1994)CrossRefGoogle Scholar
  2. 98.
    J.H. Taylor, Rev. Mod. Phys. 66, 711 (1994)CrossRefGoogle Scholar
  3. 99.
    P. Coles, Einstein, Eddington and the 1919 Eclipse. In: V.J. Martinez, V. Trimble and M.J. Pons-Borderia (eds.), Proceedings on International School on The Historical Development of Modern Cosmology, Valencia 2000, ASP Conference Series (to appear); astro-ph/0102462Google Scholar
  4. 100.
    M. Froeschlé, F. Miguard and F. Arenon, in Proceedings of the Hipparcos Venice 1997 Symposium, to appearGoogle Scholar
  5. 101.
    I. Shapiro et al., Phys. Rev. Lett. 26, 1137 (1971)ADSGoogle Scholar
  6. 102.
    R.D. Reasonberg et al., Astrophys. J. 234, L 219 (1979)Google Scholar
  7. 103.
    J.G. Williams et al., Phys. Rev. D 53, 6730 (1996)Google Scholar
  8. 104.
    J.M. Weisberg and J.H. Taylor, Astrophys. J. 576, 942 (2002)Google Scholar
  9. 105.
    S. Chandrasekhar, The Mathematical Theory of Black Holes. Clarendon Press, Oxford University Press 1983zbMATHGoogle Scholar
  10. 106.
    J.B. Hartle, Phys. Reports 46, 201 (1978)CrossRefGoogle Scholar
  11. 107.
    C.V. Vishveshwara, Phys. Rev. D 1, 2870 (1970)Google Scholar
  12. 108.
    F.J. Zerilli, Phys. Rev. Lett. 24, 737 (1970)CrossRefGoogle Scholar
  13. 109.
    R. Schödel et al., Nature 419, 694 (2002); astro-ph/0210426Google Scholar
  14. 110.
    B. Bertotti, L. Iess and P. Tortora, Nature 425, 374–376 (2003)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Norbert Straumann
    • 1
  1. 1.Institut für Theoretische PhysikUniversität ZurichZurichSwitzerland

Personalised recommendations