Physics in External Gravitational Fields

  • Norbert Straumann
Part of the Texts and Monographs in Physics book series (TMP)


We already emphasized in the introduction that the principle of equivalence is one of the foundation pillars of the general theory of relativity. It leads naturally to the kinematical framework of general relativity and determines, suitable interpreted, the coupling of physical systems to external gravitational fields. This will be discussed in detail in the present chapter.


Null Geodesic World Line Inertial System Spin Precession Gravitational Redshift 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 78.
    D. Lovelock, J. Math. Phys. 13, 874 (1972)MathSciNetADSzbMATHCrossRefGoogle Scholar
  2. 79.
    N. Straumann, On the Cosmological Constant Problems and the Astronomical Evidence for a Homogenous Energy Density with Negative Pressure. In: B. Duplantier and V. Rivasseau (eds.), Vacuum Energy-Renormalization, Séminaire Poincaré (2002). Birkhäuser Verlag 2003; astro-ph/0203330; and The History of the Cosmological Constant. In: On the Nature of Dark Energy, Proceedings of the 18th IAP Astrophysics Colloquium, Frontier Group 2002; gr-qc/0208027Google Scholar
  3. 80.
    D.E. Rowe, Phys. Perspect. 3, 379–424 (2001)MathSciNetADSCrossRefGoogle Scholar
  4. 81.
    A.E. Fischer and J.E. Marsden, The Initial Value Problem and the Dynamical Formulation of General Relativity. In: S.W. Hawking and W. Israel (eds.), General Relativity, an Einstein Centenary Survey. Cambridge University Press 1979Google Scholar
  5. 82.
    Y. Choquet-Bruhat and J.W. York, The Cauchy Problem. In: A. Held (ed.), General Relativity and Gravitation, Vol. 1, Plenum Press 1980Google Scholar
  6. 83.
    S. Klainerman and F. Nicol`o, The Evolution Problem in General Relativity. Birkhäuser 2002Google Scholar
  7. 84.
    R. Schoen and S.T. Yau, Commun. Math. Phys. 65, 45 (1976); Phys. Rev. Lett. 43, 1457 (1979); Commun. Math. Phys. 79, 231 (1981); Commun. Math. Phys. 79, 47 (1981)Google Scholar
  8. 85.
    L. Rosenfeld, Mem. Roy. Acad. Belg. Cl. Sci. 18, 6 (1940)MathSciNetGoogle Scholar
  9. 86.
    D. Christodoulou and S. Klainermann, The Global, Nonlinear Stability of the Minkowski Space. Princeton University Press, Princeton 1993zbMATHGoogle Scholar
  10. 87.
    M. Shibata and T. Nakamura, Phys. Rev. D 52, 5428 (1995)zbMATHGoogle Scholar
  11. 88.
    T.W. Baumgarte and S.L. Shapiro, Phys. Rev. D 59, 024007 (1999)Google Scholar
  12. 89.
    M. Alcubierre et al., Phys. Rev. D 62, 044034 (2000)Google Scholar
  13. 90.
    S. Frittelli and O. Reula, Commun. Math. Phys. 166, 221 (1994)MathSciNetADSzbMATHCrossRefGoogle Scholar
  14. 91.
    C. Bona, J. Masso, E. Seidel and J. Stela, Phys. Rev. Lett. 75, 600 (1995)ADSCrossRefGoogle Scholar
  15. 92.
    A. Abrahams, A. Anderson, Y. Choquet-Bruhat and J.W. York Jr., Phys. Rev. Lett. 75, 3377 (1996)ADSCrossRefGoogle Scholar
  16. 93.
    M.H.P.M. van Putten and D.M. Eardley, Phys. Rev. D 53, 3056 (1996)Google Scholar
  17. 94.
    H. Friedrich, Class. Quantum Grav. 13, 1451 (1996)Google Scholar
  18. 95.
    A. Anderson, Y. Choquet-Bruhat, and J.W. York,Jr., Top. Methods Nonlinear Anal. 10, 353 (1997)MathSciNetzbMATHGoogle Scholar
  19. 96.

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Norbert Straumann
    • 1
  1. 1.Institut für Theoretische PhysikUniversität ZurichZurichSwitzerland

Personalised recommendations