Skip to main content

Replicative Cycle of HIV

  • Chapter
Gene Therapy for HIV Infection
  • 71 Accesses

Abstract

Since the initial description of AIDS in 1981 and the subsequent discovery of HIV as the etiological agent in 1983, an enormous global effort has been put into research on this disorder and its prevention and treatment. In 1986 the first study was published demonstrating beneficial effects of drug treatment. However, until recently the benefits of drug treatment have been modest and short lived. Therefore, alternative therapeutic approaches have been proposed, such as gene therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cavert W, Notermans DW, Staskus K et al. Kinetics of response in lymphod tissues to antiretroviral therapy of HIV-1 infection. Science 1997; 276: 960–964.

    Article  PubMed  CAS  Google Scholar 

  2. Gulick RM, Mellors JW, Havlir D et al. Treatment with indinavir, zidovudine, and lamivudine in adults with human immunodeficiency virus infection and prior antiretroviral therapy. N Engl J Med 1997; 337: 734–739.

    Article  PubMed  CAS  Google Scholar 

  3. Autran B, Carcekain G, Li TS et al. Positive effects of combined antiretroviral therapy on CD4+ T cell homeostasis and function in advanced HIV disease. Science 1997; 277: 112–116.

    Article  PubMed  CAS  Google Scholar 

  4. Schmit J-C, Ruiz L, Clotet B et al. Resistance-related mutations in the HIV-1 protease gene of patients treated for 1 year with the protease inhibitor ritonavir (ABT-538). AIDS 1996; 10: 995–999.

    Article  PubMed  CAS  Google Scholar 

  5. Condra JH, Schleif WA, Blahy OM et al. In vivo emergence of HIV-1 variants resistant to multiple protease inhibitors. Nature 1995; 374: 569–571.

    Article  PubMed  CAS  Google Scholar 

  6. Markowitz M, Mo H, Kempf DJ et al. Selection and analysis of human immunodeficiency virus type 1 variants with increased resistance to ABT-538, a novel protease inhibitor. J Virol 1995; 69: 701–706.

    PubMed  CAS  Google Scholar 

  7. Gottfredsson M, Bohjanen PR. Human immunodeficiency virus type 1 as a target for gene therapy. Front Biosci 1997; 2: D619–634.

    PubMed  CAS  Google Scholar 

  8. Gallo RC. Human retroviruses in the second decade: a personal perspective. Nature Med 1995; 1753–759.

    Google Scholar 

  9. Ho DD, Neumann AU, Perelson AS et al. Rapid turnover of plasma virions and CD4 lymphocytes in HIV-i infection. Nature 1995; 373: 123–126.

    Article  PubMed  CAS  Google Scholar 

  10. Wei X, Ghosh SK, Taylor ME et al. Viral dynamics in human im- munodeficiency virus type 1 infection. Nature 1995; 373: 117–122.

    Article  PubMed  CAS  Google Scholar 

  11. Buchschacher GL Jr. Molecular targets of gene transfer therapy for HIV infection. JAMA 1993; 269: 2880–2886.

    Article  PubMed  CAS  Google Scholar 

  12. Maddon PJ, Dalgleish AG, McDougal JS et al. The T4 gene encodes the AIDS virus receptor and is expressed in the immune system and the brain. Cell 1986; 47: 333–348.

    Article  PubMed  CAS  Google Scholar 

  13. Dalgleish AG, Beverley PCL, Clapham PR et al. The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus. Nature 1984; 312: 763–767.

    Article  PubMed  CAS  Google Scholar 

  14. Klatzman D, Champagne E, Chamaret S et al. T lymphocyte T4 molecule behaves as the receptor for human retrovirus LAV. Nature 1984; 312: 767–768.

    Article  Google Scholar 

  15. Alkhatib G, Combardiere C, Broder CC et al. CC CKR5: A RANTES, MIP ia, MIP-i(3 receptor as a fusion cofactor for macrophage-tropic HIV-i. Science 1996; 2721955–1958.

    Google Scholar 

  16. Choe H, Farzan M, Sun Y et al. The (3-Chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates. Cell 1996; 85: 1135–1148.

    Article  PubMed  CAS  Google Scholar 

  17. Deng H, Liu R, Ellmeier W et al. Identification of a major coreceptor for primary isolates of HIV-i. Nature 1996; 381: 661–666.

    Article  PubMed  CAS  Google Scholar 

  18. Doranz BJ, Rucker J, Yi Y et al. A dual-tropic primary HIV-1 isolate that uses Fusin and the ß-Chemokine receptors CKR-5, CKR-3, and CKR-2b as Fusion cofactors. Cell 1996; 85: 1149–1158.

    Article  PubMed  CAS  Google Scholar 

  19. Dragic T, Litwin V, Allaway GP et al. HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature 1996; 381: 667–673.

    Article  PubMed  CAS  Google Scholar 

  20. Feng Y, Broder CC, Kennedy PE et al. HIV-1 entry cofactor: Functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 1996; 272: 872–877.

    Article  PubMed  CAS  Google Scholar 

  21. Zhu T, Mo H, Wang N et al. Genotypic and phenotypic characterization of HIV-1 in patients with primary infection. Science 1993; 261: 1179–1181.

    Article  PubMed  CAS  Google Scholar 

  22. Schuitemaker H, Koot M, Koostra NA et al. Biological phenotype of human immunodeficiency virus type i clones at different stages of infection: progression of disease is associated with a shift from monocytotropic to T cell tropic virus populations. J Virol 1992; 66: 1354–1360.

    PubMed  CAS  Google Scholar 

  23. Connor RI, Ho DD. Human immunodeficiency virus type 1 variants with increased replicative capacity develop during the asymptomatic stage before disease progression. J Virol 1994; 68:4400–4408.

    Google Scholar 

  24. Trono D. HIV accessory proteins: leading roles for the supporting cast. Cell 1995; 82: 189–192.

    Article  PubMed  CAS  Google Scholar 

  25. Heinzinger NK, Bukrinsky MI, Haggerty SA et al. The Vpr protein of human immunodeficiency virus type 1 influences nuclear localization of viral nucleic acids in nondividing host cells. Proc Natl Acad Sci USA 1994; 91:7311–7315.

    Google Scholar 

  26. Miller RH, Turk SR, Black RJ et al. Conference summary: novel HIV therapies-from discovery to clinical proof of concept. AIDS Res Hum Retroviruses 1996; 12: 859–865.

    Article  PubMed  CAS  Google Scholar 

  27. Kam J. An introduction to the growth cycle of human immunodeficiency virus. In: Kam J, ed. HIV. Biochemistry, molecular biology, and drug discovery. Vol. 2. Oxford: Oxford University Press, 1995: 3–14.

    Google Scholar 

  28. Farnet CM, Bushman FD. HIV-1 cDNA integration: requirement of HMG I(Y) protein for function of preintegration complexes in vitro. Cell 1997; 88483–492.

    Google Scholar 

  29. Cullen BR. The HIV-1 Tat protein: an RNA sequence-specific processivity factor? Cell 1990; 63: 655–657.

    Article  PubMed  CAS  Google Scholar 

  30. Cullen BR. Mechanism of action of regulatory proteins encoded by complex retroviruses. Microbiol Rev 1992; 56: 375–394.

    PubMed  CAS  Google Scholar 

  31. Dayton AI, Sodorski JG, Rosen CA et al. The trans-activator gene of the human T cell lymphotropic virus type III is required for replication. Cell 1986; 44: 941–947.

    Article  PubMed  CAS  Google Scholar 

  32. Fisher AG, Feinberg MB, Josephs SF et al. The trans-activator gene of HTLV-III is essential for virus replication. Nature 1986; 320: 367–371.

    Article  PubMed  CAS  Google Scholar 

  33. Rosen CA, Sodorski JG, Haseltine WA. The location of cis-acting regulatory sequences in the human T cell lymphotropic virus type III (HTLV-III/LAV) long terminal repeat. Cell 1985; 41: 813–823.

    Article  PubMed  CAS  Google Scholar 

  34. Feng S, Holland EC. HIV-1 tat trans-activation requires the loop sequence within tar. Nature 1988; 334: 165–167.

    Article  PubMed  CAS  Google Scholar 

  35. Cullen BR. Trans-activation of human immunodeficiency virus occurs via a bimodal mechanism. Cell 1986; 46: 973–982.

    Article  PubMed  CAS  Google Scholar 

  36. Arya SK, Guo C, Josephs SF et al. Trans-activator gene of human T-lymphotropic virus type III (HTLV-III). Science 1985; 229: 69–73.

    Article  PubMed  CAS  Google Scholar 

  37. Garcia-Martinez LF, Ivanov D et al. Association of Tat with purified HIV-1 and HIV-1 transcription preintegration complexes. J Biol Chem 1997; 272: 6851–6958.

    Google Scholar 

  38. Mavankal G, Ignatius Ou SH, Oliver H et al. Human immunodeficiency virus type 1 and 2 Tat proteins specifically interact with RNA polymerase II. Proc Natl Acad Sci USA 1996; 93: 2089–2094.

    Article  PubMed  CAS  Google Scholar 

  39. Parada CA, Roeder RG. Enhanced processivity of RNA polymerase II triggered by Tat-induced phosphorylation of its carboxy-terminal domain. Nature 1996; 384: 375–378.

    Article  PubMed  CAS  Google Scholar 

  40. Jeang KT, Chun R, Lin NH et al. In vitro and in vivo binding of human immunodeficiency virus type 1 Tat protein and Spi transcription factor. J Virol 1993; 67: 6224–6233.

    PubMed  CAS  Google Scholar 

  41. Kashanchi F, Piras G, Radonovich MF et al. Direct interaction of human TFIID with the HIV-1 transactivator tat. Nature 1994; 367: 295–299.

    Article  PubMed  CAS  Google Scholar 

  42. Liu J, Perkins ND, Schmid RM et al. Specific NF-icB subunits act in concert with tat to stimulate human immunodeficiency virus type 1 infection. J Virol 1992; 66: 3883–3887.

    PubMed  CAS  Google Scholar 

  43. Daly TJ, Cook KS, Gray GS et al. Specific binding of HIV-1 recombinant Rev protein to the Rev-response element in vitro. Nature 1989; 342: 816–819.

    CAS  Google Scholar 

  44. Battiste JL, Mao H, Rao S et al. Alpha helix-RNA major groove recognition in an HIV-1 Rev peptide-RRE RNA complex. Science 1996; 27:31547–1551.

    Google Scholar 

  45. Malim MH, Hauber J, Le S-Y et al. The HIV-1 rev trans-activator acts through a structured target sequence to activate nuclear export of unspliced viral mRNA. Nature 1989; 338: 254–257.

    Article  PubMed  CAS  Google Scholar 

  46. Wen W, Meinkoth JL, Tsien RY et al. Identification of a signal for rapid export of proteins from nucleus. Cell 1995; 82: 463–473.

    Article  PubMed  CAS  Google Scholar 

  47. Fisher U, Huber J, Boelens WC et al. The HIV-1 Rev activation domain is a nuclear export signal that accesses an export pathway used by specific cellular RNAs. Cell 1995; 82475–483.

    Google Scholar 

  48. Ullman KS, Powers MA, Forbes DJ. Nuclear export receptors: From importin to exportin. Cell 1997; 90: 967–970.

    Article  PubMed  CAS  Google Scholar 

  49. Stade K, Ford CS, Guthrie C et al. Exportin 1 (Crmip) is an essential nuclear export factor. Cell 1997; 90: 1041–1050.

    Article  PubMed  CAS  Google Scholar 

  50. Fornerod M, Ohno M, Yoshida M et al. CRM1 is an export receptor for leucine-rich nuclear export signals. Cell 1997; 90: 1051–1060.

    Article  PubMed  CAS  Google Scholar 

  51. Bogerd HP, Fridell RA, Madore S et al. Identification of a novel cellular cofactor for the rev/rex class of retroviral regulatory proteins. Cell 1995; 82: 485–494.

    Article  PubMed  CAS  Google Scholar 

  52. Stutz F, Neville M, Rosbash M. Identification of a novel nuclear pore-associated protein as a functional target of the HIV-1 rev protein in yeast. Cell 1995; 82: 495–506.

    Article  PubMed  CAS  Google Scholar 

  53. Fritz CC, Zapp ML, Green MR. A human nucleoporin-like protein that specifically interacts with HIV Rev. Nature 1995; 376: 530–533.

    Article  CAS  Google Scholar 

  54. Kestler HW III, Ringler DJ, Mori K et al. Importance of the nef gene for maintenance of high virus loads and for development of AIDS. Cell 1991; 65: 651–662.

    Article  PubMed  CAS  Google Scholar 

  55. Deacon NJ, Tsykin A, Solomon A et al. Genomic structure of an attenuated quasi species of HIV-1 from a blood transfusion donor and recipients. Science 1995; 270: 988–991.

    Article  PubMed  CAS  Google Scholar 

  56. Kerkau T, Schmitt-Landgraf R et al. Downregulation of HLA class I antigens in HIV-1-infected cells. AIDS Res Hum Retroviruses 1989; 5: 613–620.

    Article  PubMed  CAS  Google Scholar 

  57. Scheppler JA, Nicholson JKA, Swan DC et al. Down-modulation of MHC-I in a CD4+ T cell line, CEM-E5, after HIV-1 infection. J Immunol 1989; 143: 2858–2866.

    PubMed  CAS  Google Scholar 

  58. Garcia JV, Miller AD. Serine phosphorylation-independent down-regulation of cell-surface CD4 by nef. Nature 1991; 350: 508–511.

    Article  PubMed  CAS  Google Scholar 

  59. Aiken C, Konner J, Landau NR et al. Nef induces CD4 endocytosis: requirement for a critical dileucine motif in the membrane-proximal CD4 cytoplasmic domain. Cell 1994; 76853–864.

    Google Scholar 

  60. Schwartz O, Maréchal V, Le Gall S et al. Endocytosis of major histocompatibility complex class I molecules is induced by the HIV-1 nef protein. Nature Med 1996; 2338–342.

    Google Scholar 

  61. Gulizia RJ, Collman RG, Levy JA et al. Deletion of nef slows but does not prevent CD4-positive T cell depletion in human immunodeficiency virus type 1-infected human-PBL-SCID mice. J Virol 1997; 71: 4161–4164.

    PubMed  CAS  Google Scholar 

  62. Debouck C, Tomaszek TA Jr, Ivanoff LA et al. HIV protease. In: Kam J, ed. HIV. Biochemistry, molecular biology and drug discovery. Vol. 2. Oxford: Oxford University Press, 1995: 73–88.

    Google Scholar 

  63. Bouyac M, Courcoul M, Bertoia G et al. Human immunodeficiency virus type 1 vif protein binds to the pr55$ag precursor. J Virol 1997; 71: 9358–9365.

    PubMed  CAS  Google Scholar 

  64. Rice WG, Supko JG, Malspeis L et al. Inhibitors of HIV nucleoprotein Zinc fingers as candidates for the treatment of AIDS. Science 1995; 270: 1194–1197.

    Article  PubMed  CAS  Google Scholar 

  65. Lever A, Gottlinger H, Haseltine W et al. Identification of a sequence required for efficient packaging of human immunodeficiency virus type 1 RNA into virions. J Virol 1989; 63:4085–4087.

    PubMed  CAS  Google Scholar 

  66. Mann R, Baltimore D. Varying the position of a retrovirus packaging sequence results in the encapsidation of both unspliced and spliced RNAs. J Virol 1985; 54: 401–407.

    PubMed  CAS  Google Scholar 

  67. Chen BK, Gandhi RT, Baltimore D. CD4 down-modulation during infection of human T cells with human immunodeficiency virus type 1 involves independent activities of vpu, env and nef J Virol 1996; 70: 6044–6053.

    CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gottfredsson, M. (1998). Replicative Cycle of HIV. In: Gene Therapy for HIV Infection. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-11821-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-11821-4_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-11823-8

  • Online ISBN: 978-3-662-11821-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics