Glycerol Instead of Dextrose As an Osmotic Agent in CAPD

  • A. Heaton
  • D. G. Johnston
  • M. K. Ward
  • K. G. M. M. Alberti
  • D. N. S. Kerr


Glycerol replaced dextrose as the osmotic agent in dialysis fluid for six patients undergoing CAPD. This resulted in lower plasma glucose concentrations and insulin levels. No toxicity was detected from glycerol absorption, even in one patient so exposed for 6 months. On a molar basis, however, glycerol induced less ultrafiltration than dextrose did. Because of the lower dialysate volume, clearances were less with glycerol than with dextrose.


Peritoneal Dialysis Dialysis Fluid Osmotic Agent Lower Plasma Glucose Alberti KGMM 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Spitz IM, Rubenstein AH, Bersohn I, Abrahams C, and Lowry C: Carbohydrate metabolism in renal disease. QJ Med 39: 201, 1970Google Scholar
  2. 2.
    Cerletty JM, and Engbring NH: Azotemia and glucose intolerance. Ann Intern Med 66: 1097, 1967PubMedCrossRefGoogle Scholar
  3. 3.
    Westervelt FB: Insulin effect in uremia. J Lab Clin Med 74: 79, 1969PubMedGoogle Scholar
  4. 4.
    Smith D, and Defronzo RA: Insulin resistance in uremia mediated by postbinding defects. Kidney Int 22: 54, 1982PubMedCrossRefGoogle Scholar
  5. 5.
    Jaspan JB, and Rubenstein AH: Circulating glucagon: Plasma profiles and metabolism in health and disease. Diabetes 26: 887, 1977PubMedGoogle Scholar
  6. 6.
    Samaan NA, and Freeman RM: Growth hormone levels in severe renal failure. Metabolism 19: 102, 1970PubMedCrossRefGoogle Scholar
  7. 7.
    Bagdade JD, Porte D Jr, and Bierman EL: Hypertriglyceridemia, a metabolic consequence of chronic renal failure. N Engl J Med 279: 181, 1968PubMedCrossRefGoogle Scholar
  8. 8.
    Norbeck HE, and Carlson LA: The uremic dyslipoproteinaemia: Its characteristics and relations to clinical factors. Acta Med Scand 209: 489, 1981PubMedCrossRefGoogle Scholar
  9. 9.
    Chan MK, Varghese Z, Persaud JW, Baillod RA, and Moorhead JF: Hyperlipidaemia in patients on maintenance haemo-and peritoneal dialysis: The relative pathogenetic roles of triglyceride production and tri-glyceride removal. Clin Nephrol 17: 183, 1982PubMedGoogle Scholar
  10. 10.
    Hampers CL, Soeldner JS, Doak PB, and Merrill JP: Effect of chronic renal failure and hemodialysis on carbohydrate metabolism. J Clin Invest 45: 1719, 1966PubMedCrossRefGoogle Scholar
  11. 11.
    McCosh EJ, Solangi K, Rivers JM, and Goodman A: Hypertriglyceridemia in patients with chronic renal failure insufficiency. Am J Clin Nutr 28: 1036, 1975Google Scholar
  12. 12.
    Spitz I, Rubenstein AH, Bersohn I, Lawrence AM, and Kirsteins L: The effect of dialysis on the carbohydrate intolerance of chronic renal failure. Hormone Metab Res 2: 86, 1970CrossRefGoogle Scholar
  13. 13.
    Boyer J, Gill GN, and Epstein FH: Hyperglycemia and hyperosmolality complicating peritoneal dialysis. Ann Intern Med 67: 568, 1967PubMedCrossRefGoogle Scholar
  14. 14.
    Desanto NG, Capodicasa G, Senatore R, Cicchetti T, Cirillo D, Damiano M, Torella R, Giugliano D, Improta L, and Giordano C: Glucose utilization from dialysate in patients on continuous ambulatory peritoneal dialysis (CAPD). Int J Artif Organs 2: 119, 1979Google Scholar
  15. 15.
    Vas SI, Duwe A, and Weatherhead J: Natural defence mechanisms of the peritoneum: The effect of peritoneal dialysis fluid on polymorphonuclear cells. In Atkins RC, Thompson NM, and Farrell PC (Eds), Peritoneal dialysis. Edinburgh: Churchill Livingstone, 1981, p 41Google Scholar
  16. 16.
    McGary TJ, Nolph KD, and Kartinos NJ: Polyanions as osmotic agents in a simulated in vitro model of peritoneal dialysis. Trans Am Soc Artif Intern Organs 27: 314, 1981PubMedGoogle Scholar
  17. 17.
    Williams P, Marliss EB, Anderson GH, Oren A, Stein A, Khanna R, Pettit J, Brandes L, Rodella H, Mupas L, Dombros N, and Oreopoulos DG: Amino acid absorption following intraperitoneal administration in CAPD patients. Peritoneal Dial Bull 2: 124, 1982Google Scholar
  18. 18.
    Bazzato G, Coli U, Landini S, Fracasso A, Moraciello P, Righetto F, and Scanferla F: Xylitol and low dosages of insulin: New perspectives for diabetic uremic patients on CAPD. Peritoneal Dial Bull 2: 161, 1981Google Scholar
  19. 19.
    Lloyd B, Burrin JM, Smythe P, and Alberti KGMM; Enzymatic fluorometric continuous flow assay for blood glucose, lactate, pyruvate, alanine, glycerol and 3-hydroxybutyrate. Clin Chem 24: 1724, 1978PubMedGoogle Scholar
  20. 20.
    Price CP, Lloyd B, and Alberti KGMM: A kinetic spectrophotometric assay for rapid determination of acetoacetate in blood. Clin Chem 23: 1893, 1977PubMedGoogle Scholar
  21. 21.
    Soeldner JS, and Slone D: Critical variables in the radioimmunoassay of serum insulin using the double antibody technic. Diabetes 14: 771, 1965PubMedGoogle Scholar
  22. 22.
    Orskov H, Thomsen HG, and Yde H: Wick chromatography for rapid and reliable immunoassay of insulin, glucagon and growth hormone. Nature (London) 219: 193, 1968CrossRefGoogle Scholar
  23. 23.
    Canaud B, Liendo-Liendo C, Claret G, Mion H, and Mion C: Etude in situ de la cinetique de l’ultrafiltration en cours de dialyse peritoneale avec periodes de diffusion prolongee. Nephrologie 1: 126, 1980PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • A. Heaton
    • 1
  • D. G. Johnston
    • 1
  • M. K. Ward
    • 1
  • K. G. M. M. Alberti
    • 1
  • D. N. S. Kerr
    • 1
  1. 1.Royal Victoria InfirmaryNewcastle upon TyneUK

Personalised recommendations