Advertisement

A Comparison of Glucose Polymer and Dextrose as Osmotic Agents in CAPD

  • J. F. Winchester
  • L. D. Stegink
  • S. Ahmad
  • M. Gross
  • M. Hammeke
  • A. M. Horowitz
  • J. F. Maher
  • V. Pollak
  • T. Rakowski
  • M. Schreiber
  • S. Singh
  • P. Somani
  • D. Vidt

Summary

Dialysis solutions containing a mixture of glucose oligosaccharides (average molecular mass 710 daltons) derived from starch, were compared with 1.5% or 4.25% dextrose-containing dialysis fluids in single exchanges in 88 patients on continuous ambulatory peritoneal dialysis (CAPD). Dialysis fluid osmolality, net ultrafiltration and dialysate-to-plasma solute ratios for urea and creatinine were determined during a single 2 L exchange over 1 to 10 hours dwell time. In addition, absorption of the dextrose and oligosaccharides was investigated. Net ultrafiltration (mean ± SEM) was comparable for an 8 hour dwell time (1086 ± 169 ml for 4.25% dextrose solution and 1081 ± 100 ml for 8% polymer solution). In addition, clearances of urea and creatinine were nearly identical for the 4.25% dextrose and 8% glucose polymer solutions, as were the dialysate-toplasma concentration ratios for urea and creatinine. Both dextrose and glucose oligosaccharides were absorbed within 2 hours of starting dialysis. Although few adverse effects were observed during glucose polymer single exchanges, absorbed oligosacçharides were eliminated slowly from the blood (half-life of 20 hours) suggesting a limited use for this particular preparation of glucose oligosaccharides for CAPD.

Keywords

Peritoneal Dialysis Dwell Time Continuous Ambulatory Peritoneal Dialysis Dialysis Solution Osmotic Agent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Horton ES, Johnson C, and Lebovitz HE: Carbohydrate metabolism in uremia. Ann Intern Med 68: 83, 1968CrossRefGoogle Scholar
  2. 2.
    Spitz IM, Rubenstein AH, Bersohn I, Abrahams C, and Lowry C: Carbohydrate metabolism in renal disease. Q J Med 39: 201, 1970PubMedGoogle Scholar
  3. 3.
    Bagdade JD, Porte D Jr, and Bierman EL: Hypertriglyceridemia, a metabolic consequence of chronic renal failure. N Engl J Med 279: 181, 1968PubMedCrossRefGoogle Scholar
  4. 4.
    Lindner AL, Charra B, Sherrard DJ, and-Scribner BH: Accelerated atherosclerosis in prolonged maintenance hemodialysis. N Engl J Med 290: 697, 1974PubMedCrossRefGoogle Scholar
  5. 5.
    Chan MK, Varghese Z, Persaud JW, Baillod RA, and Moorhead JF: Hyperlipidaemia in patients on maintenance haemodialysis and peritoneal dialysis: The relative pathogenetic roles of triglyceride production and triglyceride removal. Clin Nephrol 17: 183, 1982PubMedGoogle Scholar
  6. 6.
    Boyer J, Gill N, and Epstein FH: Hyperglycemia and hyperosmolality complicating peritoneal dialysis. Ann Intern Med 67: 568, 1967PubMedCrossRefGoogle Scholar
  7. 7.
    Oreopoulos DG, Robson M, Faller B, Ogilvie R, Rapaport A, and DeVeber GA: Continuous ambulatory peritoneal dialysis. A new era in the treatment of chronic renal failure. Clin Nephrol 11: 125, 1979PubMedGoogle Scholar
  8. 8.
    Pyle KW, Moncrief JW, and Popovich RP: Peritoneal transport evaluation in CAPD. In Moncrief JW, and Popovich RP (Eds), CAPD Update. New York and Paris: Masson Publishing, 1981, p 35Google Scholar
  9. 9.
    Henderson IS, Couper I, and Lumsden A: Potentially irritant glucose metabolites in unused CAPD fluid. Peritoneal Dial Bull 4 (Suppl): 530, 1984Google Scholar
  10. 10.
    Williams P, Marliss EB, Anderson GH, Oren A, Stein A, Khanna R, Pettit J, Brandes L, Rodella H, Mupas L, Dombros N, and Oreopoulos DG: Amino acid absorption following intraperitoneal administration in CAPD patients. Peritoneal Dial Bull 2: 124, 1982Google Scholar
  11. 11.
    Heaton, A, Johnston DG, Ward MK, Alberti KGMM, and Kerr DNA: Glycerol instead of glucose as an osmotic agent in CAPD. Peritoneal Dial Bull 4 (Suppl): S30, 1984Google Scholar
  12. 12.
    Twardowski ZJ, Nolph KD, McGary TJ, and Moore HL: Polyanions and glucose as osmotic agents in simulated peritoneal dialysis. Artif Organs 7: 420, 1983PubMedCrossRefGoogle Scholar
  13. 13.
    Twardowski ZJ, Hain H, McGary TJ, Moore HL, and Keller RS: Sustained ultrafiltration with gelatin dialysis fluid during long dwell dialysis exchange in rats. Peritoneal Dial Bull 4 (Suppl): S67, 1984Google Scholar
  14. 14.
    Bazzato G, Coli U, Landini S, Fracasso A, Moraciello P, Righetto F, and Scanferla F: Xylitol and low dosages of insulin: New perspectives for diabetic uremic patients on CAPD. Peritoneal Dial Bull 2: 161, 1981Google Scholar
  15. 15.
    Berlyne GM, Brewis RAL, Boath EM, and Mallick NP: A soluble glucose polymer for use in renal failure and calorie deprivation state. Lancet 1: 689, 1969PubMedCrossRefGoogle Scholar
  16. 16.
    Andersen DW, Filer LJ Jr, Wu-Rideout MYC, White LB, and Stegink LD. Utilization of intravenously administered glucose-oligosaccharides in growing miniature pigs. Pediatr Res 16: 304, 1982PubMedCrossRefGoogle Scholar
  17. 17.
    Nolph KD, Twardowski ZJ, Popovich RP, and Rubin J: Equilibration of peritoneal dialysis solutions during long dwell exchanges. J Lab Clin Med 93: 246, 1979PubMedGoogle Scholar
  18. 18.
    Silverman M: Brush disorder disaccharides in dog kidney and their spatial relationship to glucose transport receptors. J Clin Invest 52: 2486, 1973PubMedCrossRefGoogle Scholar
  19. 19.
    Young JM, and Weser E: The metabolism of circulating maltose in man. J Clin Invest 501: 246, 1979Google Scholar
  20. 20.
    Van Handle E: Trehalase and maltase in the serum of vertebrates. Comp Biochem Physiol 26: 561, 1968CrossRefGoogle Scholar
  21. 21.
    Ohneda AS, Yamagata S, Tsutsumi K, and Fujiwara H: Distribution of maltose intravenously administered to rabbits and its metabolism in the kidney. Tohoku J Exp Med 112: 141, 1974CrossRefGoogle Scholar
  22. 22.
    Young EA, Drummond A, Cool DA, Cioletti LA, Crain M, Taylor JB, and Weser E: The effect of insulin on the metabolism of parenteral maltose in man. J Clin Endocrinol Metab 50: 764, 1980PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • J. F. Winchester
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
  • L. D. Stegink
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
  • S. Ahmad
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
  • M. Gross
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
  • M. Hammeke
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
  • A. M. Horowitz
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
  • J. F. Maher
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
  • V. Pollak
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
  • T. Rakowski
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
  • M. Schreiber
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
  • S. Singh
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
  • P. Somani
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
  • D. Vidt
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
  1. 1.Georgetown UniversityUSA
  2. 2.University of IowaIowa CityUSA
  3. 3.University of WashingtonSeattleUSA
  4. 4.Medical College of OhioToledoUSA
  5. 5.St. Joseph’s HospitalOmahaUSA
  6. 6.Abbott LaboratoriesNorth ChicagoUSA
  7. 7.Uniformed Services University of the Health SciencesBethesdaUSA
  8. 8.Veterans Administration HospitalCincinnatiUSA
  9. 9.Cleveland ClinicClevelandUSA

Personalised recommendations