Whittaker functions

  • Wilhelm Magnus
  • Fritz Oberhettinger
  • Raj Pal Soni
Part of the Die Grundlehren der mathematischen Wissenschaften book series (GL, volume 52)


Rummer’s differential equation, discussed in chap. VI, can be so normalized that the differential equation in the new dependent variable does not involve the first derivative term.


Asymptotic Expansion Integral Representation Multiplication Theorem Elementary Result Addition Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Buchholz, H.: Die konfluente hypergeometrische Funktion. Berlin/Göttingen/Heidelberg: Springer 1953.zbMATHCrossRefGoogle Scholar
  2. Erdélyi, A.: Higher transcendental functions, Vol. 1. New York: McGraw-Hill 1953.Google Scholar
  3. Jorna, S.: Proc. Roy. Soc., series A, Vol. 281, 111-129.Google Scholar
  4. Kazarinoff, N. D.: [1] Trans. Amer. Math. Soc. 78, 305-328.Google Scholar
  5. — [2] J. Math. Mech. 6, 341-360.Google Scholar
  6. Slater, L. J.: Confluent hypergeometric functions. Cambridge: Univ. Press 1960.zbMATHGoogle Scholar
  7. Tricömi, F. G.: Funzioni ipergeometriche Confluenti. Rome: Edizioni Cremonese 1954.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1966

Authors and Affiliations

  • Wilhelm Magnus
    • 1
  • Fritz Oberhettinger
    • 2
  • Raj Pal Soni
    • 3
  1. 1.Courant Institute of Mathematical SciencesNew York UniversityUSA
  2. 2.Oregon State UniversityUSA
  3. 3.International Business Machines CorporationUSA

Personalised recommendations