Advertisement

Bessel functions

  • Wilhelm Magnus
  • Fritz Oberhettinger
  • Raj Pal Soni
Part of the Die Grundlehren der mathematischen Wissenschaften book series (GL, volume 52)

Abstract

Bessel functions are solutions of Bessel’s differential equation
$${z^2}\frac{{{d^2}w}}{{d{z^2}}} + z\frac{{dw}}{{dz}} + ({z^2} - {v^2})w = 0,{\text{ }}v,z{\text{can be arbitrarily complex}}$$
.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Erdélyi, A.: Higher transcendental functions, vol. 2. New York: McGraw-Hill 1953.Google Scholar
  2. Gray, A., G. B. Mathews and T. M. MacRobert: A treatise on the theory of Bessel functions. London: Macmillan 1931.Google Scholar
  3. McLachlan, N. W.: Bessel functions for Engineers. Oxford: Clarendon press 1955.Google Scholar
  4. Petiau, G.: La theorie des fonctions de Bessel. Paris 1955.Google Scholar
  5. Watson, G. N.: A treatise on the theory of Bessel functions. Cambridge: U. Press 1952.Google Scholar
  6. Wetrich, R.: Die Zylinderfunktionen und ihre Anwendungen. Leipzig: Teubner 1937.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1966

Authors and Affiliations

  • Wilhelm Magnus
    • 1
  • Fritz Oberhettinger
    • 2
  • Raj Pal Soni
    • 3
  1. 1.Courant Institute of Mathematical SciencesNew York UniversityUSA
  2. 2.Oregon State UniversityUSA
  3. 3.International Business Machines CorporationUSA

Personalised recommendations