Advertisement

Elliptic integrals, theta functions and elliptic functions

  • Wilhelm Magnus
  • Fritz Oberhettinger
  • Raj Pal Soni
Part of the Die Grundlehren der mathematischen Wissenschaften book series (GL, volume 52)

Abstract

General remarks. Any integral of the type ∫ R \(\left( {z,{Z^{\frac{1}{2}}}} \right)\) is a rational function of x and y and Z is a polynomial of the third or fourth degree in z with real coefficients and no repeated factors is called an elliptic integral.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Bellman, R.: A brief introduction to theta functions. New York: Holt, Rinehart and Winston 1961.zbMATHGoogle Scholar
  2. Byrd, P., and M. Friedman: Handbook of elliptic integrals for engineers and physicists. Berlin/Göttingen/Heidelberg: Springer 1954.zbMATHGoogle Scholar
  3. Erdélyi, A.: Higher transcendental functions, Vol. 2. New York: Mc-Graw-Hill 1953.Google Scholar
  4. Hancock, H.: Theory of elliptic functions. New York: Dover 1958.zbMATHGoogle Scholar
  5. Hancock, H.: Elliptic integrals. New York: Wiley 1917.Google Scholar
  6. Jahnke, E., F. Emde and F. Loesch: Tables of higher functions. New York: McGraw-Hill 1960.zbMATHGoogle Scholar
  7. Milne-Thomson, L. M.: Jacobian elliptic function tables. New York: Dover 1950.zbMATHGoogle Scholar
  8. MacRobert, T. M.: Functions of a complex variable. London: MacMillan 1958.Google Scholar
  9. Neville, E. H.: Jacobian elliptic functions. Oxford 1951.Google Scholar
  10. Oberhettinger, F., and W. Magnus: Anwendung der elliptischen Funktionen in Physik und Technik. Berlin/Göttingen/Heidelberg: Springer 1949.zbMATHCrossRefGoogle Scholar
  11. Schuler, M., und H. Gebelein: Five place tables of elliptic functions. Berlin/Göttingen/Heidelberg: Springer 1955.CrossRefGoogle Scholar
  12. Tricomi, F.: Elliptische Funktionen. Berlin/Göttingen/Heidelberg: Springer 1948.zbMATHGoogle Scholar
  13. Whittaker, E. T., and G. N. Watson: A course of modern analysis. Cambridge 1944.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1966

Authors and Affiliations

  • Wilhelm Magnus
    • 1
  • Fritz Oberhettinger
    • 2
  • Raj Pal Soni
    • 3
  1. 1.Courant Institute of Mathematical SciencesNew York UniversityUSA
  2. 2.Oregon State UniversityUSA
  3. 3.International Business Machines CorporationUSA

Personalised recommendations