Skip to main content

A Time Variant Computational Mesh Technique to Simulate a Large Scale Ponding Test

  • Conference paper
Finite Elements in Water Resources

Summary

A ponding test in a 1600 m long reach of a trapezoidal irrigation canal, cross sectional area of max. 244 m2, has been performed to determine the hydraulic properties of the lining as well as the water losses due to infiltration and evaporation.

The experimental results were then used to validate a numerical model based on the 2D-Richards equation. The model takes into account the governing equation nonlinearity through the use of a time variant computational grid. This “breathing” grid automatically reduces its mesh size in regions of high gradients in hydraulic head, while in regions of low gradients the grid expands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bear, J., (1972), “Dynamics of Fluid in Porous Media”, American Elsevier, New York.

    Google Scholar 

  • Bear, J., (1979), “Hydraulics of Groundwater”, Mc Graw-Hill.

    Google Scholar 

  • Cooley, R.L., (1971), “A finite difference method for unsteady flow in variably saturated porous media, Application to a single pumping well, Water Resour.Res. 7(6), 1607–1625.

    Google Scholar 

  • Freeze, R.A., (1969), “The mechanism of natural groundwater recharge and discharge, 1, One-dimensional vertical unsteady unsaturated flow above a recharging or discharging groundwater flow system, Water Resour.Res. 5(1), 153–171.

    Google Scholar 

  • Freeze, R.A., (1972), “Role of subsurface flow in generating surface runoff, 1, Base flow contributions to channel flow. Water Resour.Res. 8(3), 609–623.

    Google Scholar 

  • Freyberg, D.L., (1983), “Modeling the Effects of a Time-Dependent Wetted Perimeter on Infiltration from Ephemeral Channels. Water Resources Research, Vol. 19, No. 2, 559–566.

    Google Scholar 

  • Hornberger, G.M., I.Remson, and A.A. Fungaroli, (1969), Numerical studies of a composite soil-moisture groundwater system. Water Resour.Res., 5 (4), 797–802.

    Google Scholar 

  • Pikul, M.F., R.L. Street, and I.Remson, (1974), “A numerical model based on coupled one-dimensional Richards and Boussinesq equations”, Water Resour.Res., Vol. 10, No. 2, 295–302.

    Article  Google Scholar 

  • Reeder, J., Freyberg, D., Franzini, J., Remson,I., (1980) “Infiltration under Rapidly Varying Surface Water Depths”, Water Resources Research, Vol. 16, No. 1, pp. 97–104.

    Article  Google Scholar 

  • Richards, L.A. (1931), “Capillary conduction of liquids through porous mediums, Physics.1(5), 318–333.

    Google Scholar 

  • Rubin, J., (1968), “Theoretical analysis of two-dimensional, transient flow of water in unsaturated and partly unsa-turated soils, Soils Sci.Soc. Amer.Proc. 32, 607–615.

    Google Scholar 

  • Taylor, G.S. and J.N. Luthin, (1969), “Computer methods for transient analysis of water table aquifers, Water Resour. Res. 5(1), 144–152.

    Google Scholar 

  • Vauclin, M., R., Haverkamp, and G. Vachaud, (1979), “Etudes de la Résolution Numérique de l’Equation d’Eau en Milieu Nonsaturé”, 165 pp., Presses Universitaires de Grenoble.

    Google Scholar 

  • Vauclin, M., (1975), “Etude expérimentale et numérique du drainage de nappes à surface libre. Influence de la zone non saturée”, Ph. D. thesis, 196 pp., Univ.Sci. et Méd. de Grenoble, Grenoble, France.

    Google Scholar 

  • Vauclin, M., Khanji, D. and Vachaud, G., (1979), “Experimental and Numerical Study of a Transient Two-Dimensional Unsa-turated-Saturated Water Table Recharge Problem “, Water Resources Research, Vol. 15, No. 5, Oct., pp. 1089–1101.

    Google Scholar 

  • Verma, R.D., and W. Brutsaert, (1970), “Unconfined aquifer seepage by capillary flow theory, J. Hydraul.Div.Amer.Soc. Civil Eng., 96(HY6), 1331–1334.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schmitz, G., Vauclin, M., Seus, G.J. (1984). A Time Variant Computational Mesh Technique to Simulate a Large Scale Ponding Test. In: Laible, J.P., Brebbia, C.A., Gray, W., Pinder, G. (eds) Finite Elements in Water Resources. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-11744-6_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-11744-6_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-11746-0

  • Online ISBN: 978-3-662-11744-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics