Advertisement

Miscellaneous

  • Hans Hermes
Conference paper
Part of the Die Grundlehren der Mathematischen Wissenschaften book series (GL, volume 127)

Abstract

We shall show that every recursive predicate is arithmetical. Thus, the arithmetical predicates introduced in § 27.1 are generalizations of recursive predicates. We can divide (§ 29) the arithmetical predicates into classes (which have elements in common) where the smallest class is that of the recursive and a further class is that of the recursively enumerable predicates which we shall discuss in § 28.

Keywords

Turing Machine Free Variable Computable Function Minimal Logic Computable Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Specker, E.: Nicht konstruktiv beweisbare Sätze der Analysis. J. symbolic Logic 14, 145–158 1949).Google Scholar
  2. Myhill, J.: Criteria of Constructibility for Real Numbers. J. symbolic Logic 18, 7–10 (1953).MathSciNetzbMATHCrossRefGoogle Scholar
  3. Grzegorczyk, A.: On the Definition of Computable Functionals. Fundam. Math. 42, 232–239 (1955).Google Scholar
  4. Klaua, D.: Konstruktive Analysis. Berlin: VEB Deutscher Verlag der Wissenschaften 1961.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1965

Authors and Affiliations

  • Hans Hermes
    • 1
  1. 1.University of MünsterMünster i. W.Germany

Personalised recommendations