Undecidable Predicates

  • Hans Hermes
Conference paper
Part of the Die Grundlehren der Mathematischen Wissenschaften book series (GL, volume 127)

Abstract

After giving a precise definition of the concept of decidability it is possible to show for certain predicates (properties or relations) that they are undecidable. It is easy to show the undecidability of many predicates P which are definable by the help of concepts which are directly connected with the concept of algorithm. Typical of these proofs is that they operate using a diagonal procedure.

Keywords

Verse Proal 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gödel, K.: Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I. Mh. Math. Phys. 38, 173–198 (1931).CrossRefGoogle Scholar
  2. Gödel, K.: On Undecidable Propositions of Formal Mathematical Systems. Mimeographed. Institute for Advanced Study, Princeton, N. J. 1934. pp. 30.Google Scholar
  3. Tarski, A.: Der Wahrheitsbegriff in den formalisierten Sprachen. Studia Philosophica 1, 261–405 (1935). Cf. also: Logic, Semantics, Metamathematics. Papers from 1923 to 1938 by A. Tarski, translated by J. H. Woodger, Oxford: Clarendon Press 1956. pp. 152–278.Google Scholar
  4. Church, A.: An Unsolvable Problem of Elementary Number Theory. Amer. J. Math. 58, 345–363 (1936).MathSciNetCrossRefGoogle Scholar
  5. Rosser, B.: Extensions of Some Theorems of Gödel and Church. J. symbolic Logic 1, 87–91 (1936).Google Scholar
  6. Skolem, TH.: Einfacher Beweis der Unmöglichkeit eines allgemeinen Lösungsverfahrens für arithmetische Probleme. Norske Vidensk. Selsk. Forhandl., Trondheim 13, 1–4 (1940).MathSciNetGoogle Scholar
  7. KalmtiR, L.: Egyszerü példa eldönthetetlen aritmetikai problémâra. (Ein einfaches Beispiel für ein unentscheidbares arithmetisches Problem.) [Hungarian, with German abstract.] Mat. fiz. Lapok 50, 1–23 (1943).Google Scholar
  8. Mosxowski, A.: Sentences Undecidable in Formalized Arithmetic. Amsterdam: North-Holland Publishing Company 1952.Google Scholar
  9. Tarski, A., A. MosTOwsKl and R. M. Robinson: Undecidable Theories. Amsterdam: North-Holland Publishing Company 1953. (This book discusses especially the essential undecidability of the theories it deals with.)Google Scholar
  10. Goodstein, R. L.: Recursive Number Theory. Amsterdam: North-Holland Publishing Company 1957.MATHGoogle Scholar
  11. Grzegorczyk, A.: Fonctions Récursives. Collection de Logique Mathématique, Série A. Paris — Louvain: Gauthiers-Villars — E. Nauwelaerts 1961.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1965

Authors and Affiliations

  • Hans Hermes
    • 1
  1. 1.University of MünsterMünster i. W.Germany

Personalised recommendations