Endothelin Signaling to the Nucleus: Regulation of Gene Expression and Phenotype

  • Michael S. Simonson

Abstract

Endothelins (ET) were discovered as endothelium-derived vasoconstrictor pep-tides, and much research has focused on elucidating transmembrane signals by which ET receptors control vasoconstriction. Shortly after the discovery of ET, it became clear that these peptides also stimulate mitogenesis. These results demonstrated that ET peptides regulate not only short-term events (i.e., vasoconstriction) but also long-term actions requiring coordinated and differential regulation of gene expression. The idea that ETs could regulate a cell’s genetic program provided a new perspective with which to consider the physiological and pathophysiological actions of ETs.

Keywords

Tyrosine Integrin Renin Aldosterone Thymidine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Simonson MS. Endothelins: Multifunctional renal peptides. Physiol Rev 1993; 73: 375–411.Google Scholar
  2. 2.
    Levin ER. Endothelins. New Engl J Med 1995; 333: 356–363.Google Scholar
  3. 3.
    Yanagisawa M. The endothelin system: A new target for therapeutic intervention. Circulation 1994; 89: 1320–1322.Google Scholar
  4. 4.
    Kohan DE. Endothelins in the normal and diseased kidney. J Kidney Dis 1997; 29: 2–26.Google Scholar
  5. 5.
    Rubanyi GM, Polokoff MA. Endothelins: Molecular biology, biochemistry, pharmacology, physiology, and pathophysiology. Pharmacol Rev 1994; 46: 325–415.PubMedGoogle Scholar
  6. 6.
    Simonson MS, Wann S, Mene’ P et al. Endothelin stimulates phospholipase C, Na+1H+ exchange, c-fos expression, and mitogenesis in rat mesangial cells. J Clin Invest 1989; 83:708-712.Google Scholar
  7. 7.
    Komuro I, Kurihara H, Sugiyama T et al. Endothelin stimulates c-fos and c-myc expression and proliferation of vascular smooth muscle cells. FEBS Lett 1988; 238: 249–252.PubMedCrossRefGoogle Scholar
  8. 8.
    Back KF, Murray JJ, Breyer MD et al. Mesangial cell, glomerular, and renal vascular responses to endothelin in the kidney. J Clin Invest 1989; 83: 336–342.Google Scholar
  9. 9.
    Battistini B, Chailler P, D’Orleans-Juste P, Briere N, Sirois P. Growth regulatory properties of endothelins. Peptides 1993; 14: 385–399.Google Scholar
  10. 10.
    Sakai S, Miyauchi T, Kobayashi M et al. Inhibition of myocardial endothelin pathway improves long-term survival in heart failure. Nature 1996; 384:353–355.Google Scholar
  11. 11.
    Benigni A, Zoja C, Corna D et al. A specific endothelin subtype A receptor antagonist protects against functional and structural injury in a rat model of renal disease progression. Kidney Int 1993; 44:440-444.Google Scholar
  12. 12.
    Douglas SA, Louden C, Vickery-Clark LM et al. A role for endogenous endothelinin neointimal formation after rat carotid artery balloon angioplasty. Circ Res 1994; 75: 190–197.Google Scholar
  13. 13.
    Lerman A, Edwards BS, Hallett JW et al. Circulating and tissue endothelin immunoreactivity in advanced atherosclerosis. New Engl J Med 1991; 325: 997–1001.Google Scholar
  14. 14.
    Giad A, Yanagisawa M, Langleben D et al. Expression of endothelin-1 in the lungs of patients with pulmonary hypertension. New Engi J Med 1993; 3281732-1739.Google Scholar
  15. 15.
    Ferrer P, Valentine M, Jenkins-West T et al. Orally active endothelin receptor antagonist BMS-182874 suppresses neointimal development in balloon-injured rat carotid arteries. J Cardiovasc Pharmacol 1995; 26: 908–915.Google Scholar
  16. 16.
    Benigni A, Zoja C, Corna D et al. Blocking both type A and B endothelin receptors in the kidney attenuates renal injury and prolongs survival in rats with remnant kidney. Am J Kid Dis 1996; 27:4i6-423.Google Scholar
  17. 17.
    Hocher B, Liefeldt L, Thone-Reineke C et al. Characterization of the renal phenotype of transgenic rats expressing the human endothelin-2 gene. Hypertension 1996; 28: 196–201.PubMedCrossRefGoogle Scholar
  18. 18.
    Hocher B, Thone-Reineke C, Rohmeiss P et al. Endothelin-1 transgenic mice develop glomerulosclerosis, interstitial fibrosis, and renal cysts in an age and gender dependent manner. J Am Soc Nephrol 1996; 12:1633.Google Scholar
  19. 19.
    Fukada Y, Hirata Y, Yoshimi H et al. Endothelin is a potent secretagogue for atrial natriuretic peptide in cultured rat atrial myocytes. Biochem Biophys Res Comm 1988; 155: 167–171.CrossRefGoogle Scholar
  20. 20.
    Hu JR, Berninger UG, Lang RE. Endothelin stimulates atrial natriuretic peptide (ANP) release from rat atria. Eur J Pharmacol 1988; 158: 177–180.PubMedCrossRefGoogle Scholar
  21. 21.
    Sandok EK, Lerman A, Stingo AJ, Perrella MA, Gloviczki P, Burnett JC. Endothelin in a model of acute ischemic renal dysfunction: Modulating action of atrial natriuretic factor. J Am Soc Nephrol 1992; 3: 196–202.PubMedGoogle Scholar
  22. 22.
    Neuser D, Knorr A, Stasch JP, Kazda S. Mitogenic activity of endothelin-i and -3 on vascular smooth muscle cells is inhibited by atrial natriuretic peptides. Artery 1990; 17: 311–324.PubMedGoogle Scholar
  23. 23.
    Simonson MS. Anti-AP-1 activity of all-trans retinoic acid in glomerular mesangial cells. Am J Physiol 1994; 267: F805 - F815.Google Scholar
  24. 24.
    Zhou M, Sucov HM, Evans RM et al. Retinoid-dependent pathways suppress myocardial cell hypertrophy. Proc Natl Acad Sci 1995; 92: 7391–7395.Google Scholar
  25. 25.
    Wu J, Garami M, Cheng T et al. 1,25 (OH)2 Vitamin D3 and retinoic acid antagonize endothelin-stimulated hypertrophy of neonatal rat cardiac myocytes. J Clin Invest 1996; 97: 1577–1588.Google Scholar
  26. 26.
    Van Biesen T, Luttrell LM, Hawes BE et al. Mitogenic signaling via G protein-coupled receptors. Endocrine Rev 1996; 17: 698–714.Google Scholar
  27. 27.
    Kurihara Y, Kurihara H, Suzuki H et al. Elevated blood pressure and craniofacial abnormalities in mice deficient in endothelin-i. Nature 1994; 368: 703–710.Google Scholar
  28. 28.
    Kurihara Y, Kurihara H, Oda H et al. Aortic arch malformations and ventricular septal defect in mice deficient in endothelin-i. J Clin Invest 1995; 96: 293–300.Google Scholar
  29. 29.
    Hosoda K, Hammer RE, Richardson JA et al. Targeted and natural (Piebald-Lethal) mutations of endothelin-B receptor gene produce megacolon associated with spotted coat color in mice. Cell 1994; 79: 1267–1276.Google Scholar
  30. 30.
    Baynash AG, Hosoda K, Giaid A et al. Interaction of endothelin-3 with endothelinB receptor is essential for development of epidermal melanocytes and enteric neurons. Cell 1994; 791277–1285.Google Scholar
  31. 31.
    Puffenberger EG, Hosoda K, Washington SS et al. A missense mutation of the endothelin-B receptor gene in multigenic Hirschsprung’s disease. Cell 1994; 79: 1257–1266.Google Scholar
  32. 32.
    Chakravarti A. Endothelin receptor-mediated signaling in Hirschsprung disease. Human Mol Genetics 1996; 5: 303–307.Google Scholar
  33. 33.
    Lahav R, Ziller C, Dupin E et al. Endothelin 3 promotes neural crest cell proliferation and mediates a vast increase in melanocyte number in culture. Proc Natl Acad Sci 1996; 93: 3892–3897.Google Scholar
  34. 34.
    Folkman J, D’Amore PA. Blood vessel formation: What is its molecular basis? Cell 1996; 87:1153-1155.Google Scholar
  35. 35.
    Chakravarthy U, Gardiner TA, Anderson P et al. The effect of endothelin 1 on the retinal microvascular pericyte. Microvasc Res 1992; 43241-254.Google Scholar
  36. 36.
    Yamagishi S, Hsu C-C, Kobayashi K et al. Endothelin-i mediates endothelial cell-dependent proliferation of vascular pericytes. Biochim Biophys Res Comm 1993; 191: 840–846.Google Scholar
  37. 37.
    Guidry C, Hook M. Endothelins produced by endothelial cells promote collagen gel contraction by fibroblasts. J Cell Biol 1991; 115: 873–880.PubMedCrossRefGoogle Scholar
  38. 38.
    Villaschi S, Nicosia RF. Paracrine interactions between fibroblasts and endothelial cells in a serum-free coculture model. Lab Invest 1994; 71: 291–299.Google Scholar
  39. 39.
    Rhoten RLP, Comair YG, Shedid D et al. Specific repression of the preproendothelin-1 gene in intracranial arteriovenous malformations. J Neurosurg 1997; 86: 101–108.Google Scholar
  40. 40.
    Spetzler RF, Wilson CB, Weinstein P et al. Normal perfusion pressure breakthrough theory. Clin Neurosurg 1978; 25: 651–672.PubMedGoogle Scholar
  41. 41.
    Spetzler RF, Martin NA. A proposed grading system for arteriovenous malformations. J Neurosurg 1986; 65: 476–483.PubMedCrossRefGoogle Scholar
  42. 42.
    Muldoon LL, Pribnow D, Roland KD et al. Endothelin-i stimulates DNA synthesis and anchorage-independent growth of rat-1 fibroblasts throught of protein kinase C-dependent mechanism. Cell Reg 1990; 1: 379–390.Google Scholar
  43. 43.
    Kusuhara M, Yamaguchi K, Kuranami M et al. Stimulation of anchorage-independent cell growth by endothelin in NRK 49F cells. Cancer Res 1992; 52: 3011–3014.Google Scholar
  44. 44.
    Kusuhara M, Yamaguchi K, Nagasaki K et al. Production of endothelin in human cancer cell lines. Cancer Res 1990; 50: 3257–3261.Google Scholar
  45. 45.
    Kar S, Yousem SA, Carr BI. Endothelin-i expression by human hepatocellular carcinoma. Biochim Biophys Res Comm 1995; 216: 514–519.Google Scholar
  46. 46.
    Nelson JB, Hedican SP, George DJ et al. Identification of endothelin-i in the pathophysiology of metastatic adenocarcinoma of the prostate. Nature Med 1995; 1:944-949.Google Scholar
  47. 47.
    Helset E, Sildnes T, Konopski ZS. Endothelin-i stimulates monocytes in vitro to release chemotactic activity identified as interleukin-8 and monocyte chemotactic protein-1. Mediators Inflamm 1994; 3: 155–160.Google Scholar
  48. 48.
    Hahn AW, Regenass S, Kern F et al. Expression of soluble and insoluble fibronectin in rat aorta: Effects of angiotensin II and endothelin-i. Biochim Biophys Res Comm 1993; 192: 189–197.CrossRefGoogle Scholar
  49. 49.
    Cantley LC, Auger KR, Carpenter C et al. Oncogenes and signal transduction. Cell 1991; 64: 281–302.PubMedCrossRefGoogle Scholar
  50. 50.
    Huckle WR, Dy RC, Earp HS. Calcium-dependent increase in tyrosine kinase activity stimulated by angiotensin II. Proc Natl Acad Sci 1992; 89: 8837–8841.Google Scholar
  51. 51.
    Nasmith PE, Mills GB, Grinstein S. Guanine nucleotides induce tyrosine phosphorylation and activation of the respiratory burst in neutrophils. Biochem J 1989; 257: 893–897.Google Scholar
  52. 52.
    Force T, Kyriakis JM, Avruch J et al. Endothelin, vasopressin, and angiotensin II enhance tyrosine phosphorylation by protein kinase C-dependent and -independent pathways in glomerular mesangial cells. J Biol Chem 1991; 266: 6650–6656.PubMedGoogle Scholar
  53. 53.
    Simonson MS, Herman WH. Protein kinase C and protein tyrosine kinase activity contribute to mitogenic signaling by endothelin-i: Cross-talk between G protein-coupled receptors and pp6o`-s“. J Biol Chem 1993; 268:9347-9357.Google Scholar
  54. 54.
    Zachary I, Gil J, Lehmann W et al. Bombesin, vasopressin, and endothelin rapidly stimulate tyrosine phosphorylation in intact Swiss 3T3 cells. Proc Natl Acad Sci USA 1991; 884577-4581.Google Scholar
  55. 55.
    Zachary I, Sinnett-Smith J, Rozengurt E. Bombesin, vasopressin, and endothelin stimulation of tyrosine phosphorylation in Swiss 3T3 cells. J Biol Chem 1992; 267:19031-19034.Google Scholar
  56. 56.
    Weber H, Webb ML, Serafino R et al. Endothelin-i and angiotensin-II stimulate delayed mitogenesis in cultured rat aortic smooth muscle cells: Evidence for common signaling mechanisms. Mol Endocrinol 1994; 8: 148–158.Google Scholar
  57. 57.
    Simonson MS, Wang Y, Herman WH. Ca’ channels mediate protein tyrosine kinase activation by endothelin-i. Am J Physiol 1996; 270: F790 - F797.PubMedGoogle Scholar
  58. 58.
    Richardson A, Parsons JT. Signal transduction through integrins: a central role for focal adhesion kinase. BioEssays 1995; 17: 229–236.Google Scholar
  59. 59.
    Simonson MS, Dunn MJ. Endothelin-i stimulates contraction of rat glomerular mesangial cells and potentiates (3-adrenergic-mediated cyclic adenosine monophosphate accumulation. J Clin Invest 1990; 85: 790–797.Google Scholar
  60. 60.
    Zachary Is, Sinnett-Smith J, Turner CE et al. Bombesin, vasopressin, and endohthelin rapidly stimulate tyrosine phosphorylation of the focal adhesion-associated protein paxillin in Swiss 3T3 cells. J Biol Chem 1993; 268: 22060–22065.Google Scholar
  61. 61.
    Zachary I, Sinnett-Smith J, Rozengurt E. Stimulation of tyrosine kinase activity in anti-phosphotyrosine immune complexes of Swiss 3T3 cell lysates occurs rapidly after addition of bombesin, vasopressin, and endothelin to intact cells. J Biol Chem 1991; 266:24126–24133.Google Scholar
  62. 62.
    Force T, Bonventre JV. Endothelin activates Src Tyrosine kinase in glomerular mesangial cells. J Am Soc Nephrol 1992; 3: 491.Google Scholar
  63. 63.
    Zhao Y, Sudol M, Hanafusa H et al. Increased tyrosine kinase activity of c-Src during calcium-induced keratinocyte differentiation. Proc Natl Acad Sci 1992; 89: 8298–8302.PubMedCrossRefGoogle Scholar
  64. 64.
    Haneda M, Kikkawa R, Koya D et al. Endothelin-1 stimulates tyrosine phosphorylation of p125 focal adhesion kinase in mesangial cells. J Am Soc Nephrol 1995; 6: 1504–1510.Google Scholar
  65. 65.
    Richardson A, Parsons JT. A mechanism for regulation of the adhesion-associated protein tyrosine kinase pp125FAK. Nature 1996; 380:538-540.Google Scholar
  66. 66.
    Twamley-Stein GM, Pepperkok R, Ansorge W et al. The Src family tyrosine kinases are required for platelet-derived growth factor-mediated signal transduction in NIH 3T3 cells. Proc Natl Acad Sci USA 1993; 90: 7696–7700.Google Scholar
  67. 67.
    Roche S, Koegl M, Barone MV et al. DNA synthesis induced by some but not all growth factors requires Src family protein tyrosine kinases. Molec Cell Biol 1995; 15: 1102–1109.Google Scholar
  68. 68.
    Herskowitz I. Functional inactivation of genes by dominant negative mutations. Nature 1987; 329: 219–222.PubMedCrossRefGoogle Scholar
  69. 69.
    Simonson MS, Wang Y, Herman WH. Nuclear signaling by endothelin-i requires Src protein tyrosine kinases. J Biol Chem 1996; 271: 77–82.PubMedCrossRefGoogle Scholar
  70. 70.
    Sabe H, Knudsen B, Okada M et al. Molecular cloning and expression of chicken C-terminal Src kinase: lack of stable association with c-Src protein. Proc Natl Acad Sci U S A 1992; 89:2190-2194.Google Scholar
  71. 71.
    Imamoto A, Soriano P. Disruption of the csk gene, encoding a negative regulator of Src family tyrosine kinases, leads to neural tube defects and embyronic lethality in mice. Cell 1993; 73: 1117–1124.PubMedCrossRefGoogle Scholar
  72. 72.
    Herman WH, Simonson MS. Nuclear signaling by endothelin-i: A Ras pathway for activation of the c-fos serum response element. J Biol Chem 1995; 270: 11654–11661.Google Scholar
  73. 73.
    Cazaubon SM, Ramos-Morales F, Fischer S et al. Endothelin induces tyrosine phosphorylation and GRB2 association of Shc in astrocytes. J Biol Chem 1994; 269: 24805–24809.Google Scholar
  74. 74.
    Wang Y, Simonson MS, Pouyssegur J et al. Endothelin rapidly stimulates mitogenactivated protein kinase activity in rat mesangial cells. Biochem J 1992; 287: 589–594.PubMedGoogle Scholar
  75. 75.
    Mattingly RR, Wasilenko WJ, Woodring PJ et al. Selective amplification of endothelin-stimulated inositol 1,4,5-trisphosphate and calcium signaling by v-src transformation of Rat-1 fibroblasts. J Biol Chem 1992; 267:7470-7477.Google Scholar
  76. 76.
    Liu W, Mattingly RR, Garrison JC. Transformation of Rat-1 fibroblasts with the v-src oncogene increases the tyrosine phosphorylation state and activity of the a subunit of Gq/Gii. Proc Natl Acad Sci 1996; 93: 8258–8263.PubMedCrossRefGoogle Scholar
  77. 77.
    Brown MT, Cooper JA. Regulation, substrates, and functions of src. Biochim Biophys Acta 1996; 1287: 121–149.PubMedGoogle Scholar
  78. 78.
    Courtneidge SA, Fumagalli S, Koegl M et al. The Src family of protein tyrosine kinases: regulation and functions. Development 1993; 57-64.Google Scholar
  79. 79.
    Sugawara F, Ninomiya H, Okamoto Y et al. Endothelin-i-induced mitogenic responses of Chinese hamster ovary cells expressing human endothelin A: The role of a wortmannin-sensitive signaling pathway. Mol Pharmacol 1996; 49: 447–457.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Michael S. Simonson

There are no affiliations available

Personalised recommendations