Skip to main content

The Palm Calculus of Point Processes

  • Chapter
Elements of Queueing Theory

Part of the book series: Applications of Mathematics ((SMAP,volume 26))

Abstract

The input into a queueing system can be viewed as a sequence of required service times together with the times at which these requests arrive, that is, a double sequence {(T n , σ n )} indexed by the set ℤ of relative integers, where σ n is the amount of service (in time units) needed by customer n, who arrives at time T n . If there are no batch arrivals, then T n < T n +1. Since we are interested in the stationary behavior of the system, the sequence of arrival times {T n } contains arbitrarily large negative times. By convention, the negative or null times of the arrival sequence will be indexed by negative or null relative integers, and the positive times by positive integers: ... < T −2 < T −1 < T 0 < 0 < T 1 < T 2 < ...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographical Comments

  1. Totoki, H. (1966) Time Changes of Flows, Mem. Fac. Sci. Kyushu Univ., Ser. A, 20, pp. 27–55.

    Google Scholar 

  2. Matthes, K., Kerstan, J. and Mecke, J. (1978) Infinitely Divisible Point Processes, 2nd ed., Wiley, New York.

    MATH  Google Scholar 

  3. Mecke, J. (1967) Stationäre zufällige Masse auf lokal kompakten Abelschen Gruppen, Z. Wahrsch Verw. Gebiete, 9, pp. 36–58.

    Google Scholar 

  4. Brumelle, D. (1971) On the Relation Between Customer and Time Average in Queues, J. Appl. Probab., 2, pp. 508–520.

    Google Scholar 

  5. Slivnyak, I.M. (1962) Some Properties of Stationary Flows of Homogeneous Random Events, Theory Probab. Appl., 7, pp. 347–352.

    Google Scholar 

  6. Ryll-Nardzewski, C. (1961) Remarks on Processes of Calls, Proc. Fourth Berkeley Symp. Math. Statist. Probab. 2, pp. 455–465.

    Google Scholar 

  7. Smith, W.L. (1955) Regenerative Stochastic Processes, Proc. Roy. Soc., Ser. A 232, pp. 66–31.

    Google Scholar 

  8. Neveu, J. (1976). Sur les mesures de Palm de deux processus ponctuels stationnaires, Z. Wahrsch Verw. Gebiete, 34, pp. 199–203.

    Google Scholar 

  9. Miyazawa, M. (1983) The Derivation of Invariance Relations in Complex Queueing Systems with Stationary Inputs, Adv. Appl. Probab., 15, pp. 874–885.

    Google Scholar 

  10. Slivnyak, I.M. (1966) Stationary Streams of Homogeneous Random Events, Vest. Harkov. Gos. Univ. Ser. Mech. Math. 32, pp. 73–116.

    Google Scholar 

  11. Thorisson, H. (1995) On Time and Cycle Stationarity Stochastic Process. Appl., 55, pp. 183–209.

    Google Scholar 

  12. Thorisson, H. (1995) Coupling, Stationarity, and Regeneration Springer-Verlag, New York 200.

    Google Scholar 

  13. Brémaud, P. (1993) A Swiss Army Formula of Palm Calculus, J. Appl. Probab., 30, pp. 40–51.

    Google Scholar 

  14. Ryll-Nardzewski, C. (1961) Remarks on Processes of Calls, Proc. Fourth Berkeley Symp. Math. Statist. Probab. 2, pp. 455–465.

    Google Scholar 

  15. Franken, P. and Streller, A. (1979) Generalized Stationary Renewal Processes (in Russian), Theory Probab. Appl., 24, pp. 78–80.

    Google Scholar 

  16. Delasnerie, M. (1977) Flots mélangeants et mesures de Palm, Ann. Inst. H. Poincaré, Section B 8, pp. 357–369.

    Google Scholar 

  17. Kingman, J.F.C. (1973) Subadditive Ergodic Theory, Ann. Probab., 1, pp. 883–909.

    Google Scholar 

  18. Kingman, J.F.C. (1976) Subadditive Processes, Ecole d’Eté de Probabilité de Saint-Flour, Springer-Verlag, New York.

    Google Scholar 

  19. Daley, D.S. and Vere-Jones, D. (1988) An Introduction to the Theory of Point Processes, Springer-Verlag, New York.

    MATH  Google Scholar 

  20. Kallenberg, O. (1983) Random Measures, 3rd ed. Akademie-Verlag, Berlin, and Academic Press, London (first. ed., 1975 ).

    MATH  Google Scholar 

  21. Karr, A.F. (1986) Point Processes and their Statistical Inference, Marcel Dekker, New York.

    MATH  Google Scholar 

  22. Matthes, K., Kerstan, J. and Mecke, J. (1978) Infinitely Divisible Point Processes, 2nd ed., Wiley, New York.

    MATH  Google Scholar 

  23. Neveu, J. (1976) Processus ponctuels,in Ecole d’Eté de St. Flour, Springer-Verlag Lecture Notes in Mathematics, 598 pp. 249–445.

    Google Scholar 

  24. Sigman, K. (1995) Stationary Marked Point Processes, an Intuitive Approach, Chapman and Hall, New York.

    Google Scholar 

  25. Serfozo, R. (1999) Introduction to Stochastic Networks, Springer-Verlag, New York.

    Book  MATH  Google Scholar 

  26. Watanabe, S. (1964) On Discontinuous Additive Functionals and Lévy Measures of a Markov Process, Japan J. Math. 34, pp. 53–70.

    Google Scholar 

  27. Kunita, H. and Watanabe, S. (1967) On Square-Integrable Martingales, Nagoya Math. J. 30, pp. 209–245.

    Google Scholar 

  28. Brémaud, P. (1989) Characteristics of Queueing Systems Observed at Events and the Connection Between Stochastic Intensity and Palm Probabilities, Queueing Syst. Theory Appl., 5, pp. 99–112.

    Google Scholar 

  29. Papangelou, F. (1972) Integrability of Expected Increments and a Related Random Change of Time Scale, Transactions American Mathematical Society, 165, pp. 483–506.

    Google Scholar 

  30. Baccelli, F. and Brémaud, P. (1987) Palm Probabilities and Stationary Queueing Systems, Lecture Notes in Statistics, 41, Springer-Verlag, New York.

    Google Scholar 

  31. Mecke, J. (1968) Eine charakteristische Eigenschaft der doppelt stochastischen Poissonsche Prozesse, Z. Wahrsch Verw. Gebiete, 11, pp. 74–81.

    Google Scholar 

  32. Brémaud, P. (1981) Point Processes and Queues: Martingale Dynamics, Springer—Verlag, New York.

    Book  MATH  Google Scholar 

  33. Jacod, J. (1975) Multivariate Point Processes: Predictable Projections, Radon-Nikodÿm Derivatives, Representation of Martingales, Z. Wahrsch Verw. Gebiete, 31, pp. 235–253.

    Google Scholar 

  34. Lipster, RS. and Shiryayev, AN. (1978) Statistics of Random Processes, II: Applications, Springer-Verlag, Berl.

    Google Scholar 

  35. Last G. and Brandt, A. (1995) Marked Point Processes on the Real Line, the Dynamic Approach, Springer-Verlag, New York.

    MATH  Google Scholar 

  36. Neveu, J. (1976) Processus ponctuels,in Ecole d’Eté de St. Flour, Springer-Verlag Lecture Notes in Mathematics, 598 pp. 249–445.

    Google Scholar 

  37. Van Lieshout, M.N.M. (2000) Markov Point Processes and their Applications, Imperial College Press, London.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Baccelli, F., Brémaud, P. (2003). The Palm Calculus of Point Processes. In: Elements of Queueing Theory. Applications of Mathematics, vol 26. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-11657-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-11657-9_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08537-6

  • Online ISBN: 978-3-662-11657-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics