Squeezed States of Light

  • Pierre Meystre
  • Murray SargentIII


The Heisenberg uncertainty principle ΔAΔB\(\frac{1}{2}\)> |<[A,B]>| 1 between the standard deviations of two arbitrary observables, ΔA = <(A- <A>)2>1/2 and similarly for ΔB, has a built-in degree of freedom: one can squeeze the standard deviation of one observable provided one “stretches” that for the conjugate observable. For example the position and momentum standard deviations obey the uncertainty relation
$$\Delta x\Delta p \geqslant \hbar /2$$
and we can squeeze Δx to an arbitrarily small value at the expense of accordingly increasing the standard deviation Δp. All quantum mechanics requires is that the product be bounded from below. As discussed in Sec. 12-1, the electric and magnetic fields from a pair of observables analogous to the position and momentum of a simple harmonic oscillator. Accordingly they obey a similar uncertainty relation
$$\Delta E\Delta B \geqslant (cons\tan t)\hbar /2$$


Coherent State Master Equation Phase Conjugation Vacuum Mode Minimum Uncertainty 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. An, S. and M. Sargent III (1989), Phys. Rev. A40, 7039.Google Scholar
  2. Cohen-Tannoudji, C., J. Dupont-Roc, and G. Grynberg (1988), Processus d’interaction entre photons et atomes, InterEditions et Editions du CNRS, Paris give a clear tutorial discussion of squeezing. English edition to be published by John Wiley, New York.Google Scholar
  3. Collett M. J. and C. W. Gardiner (1984), Phys. Rev. A30.Google Scholar
  4. Gardiner C. (1980), Handbook of Stochastic Methods, Springer, Berlin.Google Scholar
  5. Gardiner, C. W. (1986), Phys. Rev. Lett. 56, 1917 gives the original derivation of the master equation describing an atom in a squeezed bath.Google Scholar
  6. Holm, D. A. and M. Sargent III (1987), A35, 2150.Google Scholar
  7. Meystre, P. and M. O. Scully (1983), Eds. Quantum Optics, Experimental Gravitation and Measurement Theory, Plenum, New York. These proceedings contain reviews on the potential applications of squeezed states in gravitational wave detection and “quantum nondemolition” measurements.Google Scholar
  8. Reid, M. D. and D. F. Walls (1986), Phys. Rev. A34 4929.Google Scholar
  9. Sargent, M. III, D. A. Holm, M. S. Zubairy (1985), Phys. Rev. A31, 3112.Google Scholar
  10. Slusher, R. E., L. W. Hollberg, B. Yurke, J. C. Mertz, J. F. Valley (1985), Phys. Rev. Lett. 55, 2409 reports the first observation of squeezed light.Google Scholar
  11. Walls, D. F. (1983), Nature 306, 141 is a tutorial review of squeezed states.Google Scholar
  12. Wu, L. A., H. J. Kimble, J. L. Hall, and H. Wu (1986), Phys. Rev. Lett. 57, 2520.ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Pierre Meystre
    • 1
  • Murray SargentIII
    • 1
  1. 1.Optical Sciences CenterUniversity of ArizonaTucsonUSA

Personalised recommendations