Ca-pools involved in the regulation of cardiac contraction under positive inotropy. X-ray microanalysis on rapidly-frozen ventricular muscles of guinea-pig

  • Maria F. Wendt-Gallitelli
Conference paper

Summary

Electron probe microanalysis of rapidly-frozen small ventricular trabeculae of guinea-pig demonstrates that 1. the distribution of total intracellular calcium varies under positive inotropy depending on the type of inotropic intervention. 2. The sarcoplasmic reticulum (SR) (or part of it) localized at the level of the z-lines reveals high calcium accumulation at the end of diastole whenever a stimulus is followed by a contraction with a short time to peak of force. After paired pulse stimulation, onlythis cell compartment accumulates calcium at the end of diastole. Since this cell compartment is “Ca-empty” in muscles frozen during contraction, SR is considered to be the source of activator Ca. 3. In several cases of inotropy (after application of ARL, caffeine or after lowering the extracellular Na + concentration), calcium is also detectable on the mitochondria, suggesting that these organelles participate in slow regulation of cytosolic calcium. 4. In some cases, total calcium located on the sarcomeres is increased. The interpretation of this finding is intriguing and requires the assumption of supplementary cytosolic Ca-sinks as yet unknown.

Key words

calcium pools positive inotropy electron probe X-ray microanalysis excitation-contraction coupling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Antoni A, Jacob R, Kaufmann R (1969) Mechanische Reaktionen des Frosch-und Säugetiermyokards bei Veränderung der Aktionspotential-Dauer durch konstante Gleichstromimpulse. Pflügers Arch 306: 33–57PubMedCrossRefGoogle Scholar
  2. 2.
    Chapman RA (1979) Excitation-contraction coupling in cardiac muscle. Prog Biophys Mol Biol 35: 1–52PubMedCrossRefGoogle Scholar
  3. 3.
    Fabiato A and Fabiato F (1977) Calcium release from the sarcoplasmic reticulum. Circ Res 40: 119–129PubMedCrossRefGoogle Scholar
  4. 4.
    Fabiato A (1983) Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum. Am J Physiol 245 (Cell Physiol 14): C1 — C4PubMedGoogle Scholar
  5. 5.
    Hall TA (1979) Biological X-ray microanalysis. J Microscopy 117: 145–163CrossRefGoogle Scholar
  6. 6.
    Morad M, Goldman Y (1973) Excitation-contraction coupling in heart muscle: membrane control of development of tension. Prog Biophys Mol Biol 27: 257–313CrossRefGoogle Scholar
  7. 7.
    Reuter H (1974) Exchange of calcium ions in the mammalian myocardium. Mechanisms and physiological significance. Circ Res 34: 599–605PubMedCrossRefGoogle Scholar
  8. 8.
    Wendt-Gallitelli MF (1985) Presystolic calcium-loading of the sarcoplasmic reticulum influences time to peak force of contraction. X-ray microanalysis on rapidly frozen guinea-pig ventricular muscle preparations. Basic Res Cardiol 80: 617–625PubMedCrossRefGoogle Scholar
  9. 9.
    Wendt-Gallitelli MF and Isenberg G (1985) Extra-and intracellular lanthanum: modified calcium distribution, inward currents and contractility in guinea pig ventricular preparations. Eur J Physiol 405: 310–322CrossRefGoogle Scholar
  10. 10.
    Wendt-Gallitelli MF, Jacob R, Wolburg H (1982) Intracellular membranes as boundaries for ionic distribution. In situ elemental distribution in guinea pig heart muscle in different defined electromechanical coupling states. Z Naturforsh 37 c: 712–720Google Scholar
  11. 11.
    Wendt-Gallitelli MF, Jacob R (1984) Efects of non-toxic doses of ouabain on sodium, potassium, calcium distribution in guinea pig papillary muscle. Electronprobe microanalysis. In: Erdmann E (ed) Cardiac glycoside receptors and positive inotropy. Steinkopff Verlag, Darmstadt pp 79–86Google Scholar
  12. 12.
    Wendt-Gallitelli MF, Wolburg H (1984) Rapid freezing, cryosectioning, and X-ray microanalysis on cardiac muscle preparations in defined functional states. J Electron Microsc Technique 1: 151–174CrossRefGoogle Scholar
  13. 13.
    Wood EH, Heppner RL, Weidman S (1969) Inotropic effects of electric currents. Circ Res 24: 409–445PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • Maria F. Wendt-Gallitelli
    • 1
  1. 1.Physiologisches Institut IIUniversität TübingenTübingenGermany

Personalised recommendations