Advertisement

Intracellular turnover and cardiac hypertrophy

  • U. Pfeifer
  • J. Dämmrich
Conference paper

Summary

Ultrastructural evidence is presented that intracellular autophagic degradation of cytoplasmic constituents is reduced during perssure induced hypertropy of left ventricular myocardium after supravalvular aortic constriction in rats. This anti-catabolic reaction has to be considered as an important mechanism for shifting the balance between synthesis and degradation to the positive side. Short term studies after administration of isoproterenol suggest a close functional relationship between work load on the one hand and the anti-catabolic reaction on the other.

Key words

cellular autophagy protein turnover hypertrophy aortic constriction isoproterenol electron microscopy morphometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albin R, Dowell RT, Zak R, Rabinowitz M (1973) Synthesis and degradation of mitochondrial components in hypertrophied rat hearts. Biochem J 136: 629–637PubMedGoogle Scholar
  2. 2.
    Alderman EL, Harrison DC (1971) Myocardial hypertrophy resulting from low dosage isoproterenol administration in rats. Proc Soc Exp Biol Med 136: 268–270PubMedGoogle Scholar
  3. 3.
    Bohmann SO, Maunsbach AB (1970) Effects on tissue fine structure of variations in colloid osmotic pressure of glutaraldehyde fixatives. U Ultrastruct Res 30: 195–208CrossRefGoogle Scholar
  4. 4.
    Dämmrich J, Pfeifer U (1983a) Cardiac hypertrophy in rats after supravalvular aortic constriction. I. Size and number of cardiomyocytes, endothelial and interstitial cells. Virchows Arch (Cell Pathol) 43: 265–286CrossRefGoogle Scholar
  5. 5.
    Dämmrich J, Pfeifer U (19836) Cardiac hypertrophy in rats after supravalvular aortic contriction. II. Inhibition of cellular autophagy in hypertrophying cardiomyocytes. Virchows Arch (Cell Pathol) 43: 287–307Google Scholar
  6. 6.
    De Duve C, Wattiaux R (1966) Functions of lysosomes. Ann Rev Physiol 28: 435–492CrossRefGoogle Scholar
  7. 7.
    Ericsson JLE (1969) Mechanismus of cellular autophagy. In: lysosomic in Biology and Pathology (eds J. T. Dingle and H. B. Fell ), Vol II, 345–394. North Holland, AmsterdamGoogle Scholar
  8. 8.
    Everett AW, Taylor RR, Sparrow MP (1977) Protein synthesis during right ventricular hypertrophy after pulmonary-artery stenosis in the dog. Biochem J 166: 315–321PubMedGoogle Scholar
  9. 9.
    Everett AW, Sparrow MP, Taylor RR (1979) Early changes in myocardial protein synthesis in vivo in response to right ventricular pressure overload in the dog. J Mol Cell Cardiol 11: 1253–1263PubMedCrossRefGoogle Scholar
  10. 10.
    Föhr J (1984) Akute Hemmung der zellulären Autophagie im Herzmuskel nach Isoproterenol. Inauguraldissertation, Universität WürzburgGoogle Scholar
  11. 11.
    Forssmann WG, Siegrist G, Orci L, Girardier L, Pictet R, Rouiller C (1967) Fixation par perfusion pour la microscopie électronique. Eassai de généralisation. J. Microsc 6: 279–304Google Scholar
  12. 12.
    Gerhard KW, Schneider DL (1979) Evidence for degradation of myofibrillar proteins in lysosomes. Myofibrillar proteins derivatized by intramuscular injection of N-ethylmaleimide are sequestered in lysosomes. J Biol Chem 254: 11798–11805Google Scholar
  13. 13.
    Glaumann H, Ballard FJ (eds) (1986) Lysosomes: Their role in protein degradation. Academic Press, London (in press)Google Scholar
  14. 14.
    Griffin WST, Wildenthal K (1978) Myofibrillar alkaline protease activity in rat heart and its response to some interventions that alter cardiac size. J Mol Cell Cardiol 10: 669–676PubMedCrossRefGoogle Scholar
  15. 15.
    Gudbjarnason S, Telerman M, Bing RJ (1964) Protein metabolism in cardiac hypertrophy and heart failure. Am J Physiol 206: 294–298PubMedGoogle Scholar
  16. 16.
    Henell R, Glaumann H (1984) Effect of leupeptin on the autophagic vacuolar system in rat hepatocytes. Correlation between ultrastructure and degradation of membrane and cytosolic proteins. Lab Invest 51: 46–56PubMedGoogle Scholar
  17. 17.
    Jenkins AB, Whittaker M, Schofield PJ (1979) The starvation induced increase in muscle protein degradation is non-lysosomal in origin. Biochem. Biophys Res Comm 86: 1014–1019PubMedCrossRefGoogle Scholar
  18. 18.
    Jurilj N, Pfeifer U (1985) Hemmung der cellulären Autophagie im Nierentubulus als frühe Reaktion nach unilateraler Nephrektomie. Ver Dtsch Ges Pathol 69 (in press)Google Scholar
  19. 19.
    Kao RL, Rannels DE, Whitman V, Morgan HE (1978) Factors accounting for growth and atrophy of the heart. Re Adv Stud Cardiac Struct Metab 12: 105–113Google Scholar
  20. 20.
    Kay J, Siemankowski RF, Greweling JA, Siemankowski LM, Goll DE (1981) Proteolysis of myofibrillar proteins at neutral pH. Acta Biol Med Germ 40: 1323–1331PubMedGoogle Scholar
  21. 21.
    Kelly FJ, Goldspink DF (1983) The differing response of four muscle types to dexamethasone treatment in the rat. Biochem J 208: 147–151Google Scholar
  22. 22.
    Kovdcs J (1983) Regression of autophagic vacuoles in seminal vesicle cells following cycloheximide treatment. Exp Cell Res 144: 231CrossRefGoogle Scholar
  23. 23.
    Lockwood TD (1985) Minute to minute neuroendocrine control of a major nonlysosomal pathway of myocardial protein degradation by (3-receptor occupancy. Progr Clin Biol Res 180: 619–622Google Scholar
  24. 24.
    Martin AF, Reddy MK, Zak R, Dowell RT, Rabinowitz M (1974) Protein metabolism in hypertrophied heart muscle. Circ Res 35: 32–40PubMedGoogle Scholar
  25. 25.
    Millward DJ (1980) Protein turnover in skeletal and cardiac muscle during normal growth and hypertrophy. In: Wildenthal K (ed) Degradative processes in heart and skeletal muscle. Elsevier/ North-Holland Biomedical Press, Amsterdam, pp 161–199Google Scholar
  26. 26.
    Morgan HE, Chua B, Beinlich CJ (1980) Regulation of protein degradation in heart. In: Wildenthal K (ed) Research monographs in cell and tissue physiology 3/4. Degradative processes in heart and skeletal muscle. Elsevier/North-Holland Biomedical Press, Amsterdam, pp 87–113Google Scholar
  27. 27.
    Müller J (1985) Autophagie beim ACTH-skuntierten Wachstum der Nebennierenrinde. Inaugerwal dissertation, WürzburgGoogle Scholar
  28. 28.
    Murakami U, Uchida K (1979) Degradation of rat cardiac myofibrils and myofibrillar proteins by a myosin-cleaving protease. J Biochem 86: 553–562PubMedGoogle Scholar
  29. 29.
    O’Hara DS, Curfman GD (1978) Suppression of protein degradation by beta-adrenergic stimulation in isolated cardiac muscle. J Cell Biol 79: 193aGoogle Scholar
  30. 30.
    Papadopoulos T, Pfeifer U (1986) Regression of rat liver autophagic vacuoles by locally applied cycloheximide. Lab Invest 54 (in press)Google Scholar
  31. 31.
    Pfeifer U (1976) Lysosomen and Autophagie. Verh Dtsch Ges Pathol 60: 28–64Google Scholar
  32. 32.
    Pfeifer U (1978) Inhibition by insulin of the formation of autophagic vacuoles in rat liver. J Cell Biol 78: 152–167PubMedCrossRefGoogle Scholar
  33. 33.
    Pfeifer U (1979) Inhibited autophagic degradation of cytoplasm during compensatory growth of liver cells after partial hepatectomy. Virchows Arch (Cell Path) 30: 313–333Google Scholar
  34. 34.
    Pfeifer U (1980) The evaluation of large test fields for morphometric studies in electron microscopy. Pathol Res Pract 166: 188–202CrossRefGoogle Scholar
  35. 35.
    Pfeifer U (1982) Kinetic and subcellular aspects of hypertrophy and atrophy. Int Rev Exp Pathol 23: 1–45PubMedGoogle Scholar
  36. 36.
    Pfeifer U, Bertling J (1977) A morphometric study of the inhibition of autophagic degradation during restorative growth of liver cells in rats re-fed after starvation. Virchows Arch (Cell Pathol) 24: 109–120Google Scholar
  37. 37.
    Pfeifer, U, Jurilj N (1979) Hemmung des intrazellulären Organellenabbaus als Prinzip der Wachstumsregulation in Leber and Niere. Verh Dtsch Ges Pathol 63: 505Google Scholar
  38. 38.
    Pfeifer U, Strauss P (1981) Autophagic vacuoles in heart muscle and liver. A comparative morpho-metric study including circadian variations in meal fed rats. J Mol Cell Cardiol 13: 37–49PubMedCrossRefGoogle Scholar
  39. 39.
    Rabinowitz M (1973) Protein synthesis and turnover in normal and hypertrophied heart. Am J Cardiol 31: 202–210PubMedCrossRefGoogle Scholar
  40. 40.
    Schoenheimer R (1942) The dynamic state of body constituents. Harvard University Press, London CambridgeGoogle Scholar
  41. 41.
    Schiaffiano S, Hanzilkova V (1972) Studies on the effect of denervation in developing muscle. II. The lysosomal system. J Ultrastruct Res 39: 1–14CrossRefGoogle Scholar
  42. 42.
    Schreiber SS, Oratz M, Evans C, Reff F, Klein J, Rothschild MA (1973) Cardiac protein degradation in acute overload in vitro: Re-utilization of amino acids. Am J Physiol 224: 338–345PubMedGoogle Scholar
  43. 43.
    Schreiber SS, Evans CD, Oratz M, Rothschild MA (1981) Protein synthesis and degradation in cardiac stress. Circ Res 48: 601–611PubMedCrossRefGoogle Scholar
  44. 44.
    Schworer CM, Shiffer KA, Mortimore GE (1981) Quantitative relationship between autophagy and proteolysis during graded amino acid deprivation in perfused rat liver. J Biol Chem 256: 7652–7658PubMedGoogle Scholar
  45. 45.
    Stanton HC, Brenner G, Mayfield ED (1969) Studies on isoproterenol-induced cardiomegaly in rats. Am Heart J 77: 72–80PubMedCrossRefGoogle Scholar
  46. 46.
    Topping TM, Travis DF (1974) An electron cytochemical study of mechanism of lysosomal activity in the rat left ventricular mural myocardium. J Ultrastruct Res 46: 1–22PubMedCrossRefGoogle Scholar
  47. 47.
    Weibel ER (1969) Sterological principles for morphometry in electron microscopy. Int Rev Cytol 26: 235–302PubMedCrossRefGoogle Scholar
  48. 48.
    Wilhelm W (1986) Inauguraldissertation, Universität Würzburg, in VorbereitungGoogle Scholar
  49. 49.
    Zak R (1976) Protein metabolism in the work-overloaded myocardium. Adv Cardiol 18: 46–56PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • U. Pfeifer
    • 2
  • J. Dämmrich
    • 1
  1. 1.Pathologisches InstitutUnviersität WürzburgWürzburgGermany
  2. 2.Pathologisches InstitutUniversität WürzburgWürzburgGermany

Personalised recommendations