Myothermal economy of rat myocardium, Chronic adaptation versus acute inotropism

  • Ch. Holubarsch
  • G. Hasenfuss
  • E. Blanchard
  • N. R. Alpert
  • L. A. Mulieri
  • H. Just


By means of rapid planar Hill type antimony-bismuth thermopiles the initial heat liberated by papillary muscles was measured synchronously with developed tension for control (C), pressure-overload (GOP), and hypothyrotic (PTU) rat myocardium (chronic experiments) and after application of 10−6 M isoproterenol or 200 10−6 M UDCG-115. Economy of force production was analyzed by the ratio of initial heat versus developed tension-time integral. This ratio was found to be reduced by 34% in GOP and by 43% in PTU myocardium (P <0.01, respectively) indicating increased economy of force production. In contrast, isoproterenol increased initial heat versus tension-time integral by 70% (P<0.01) indicating reduced economy of force production. No change in this ratio was found for UDCG-115. The presented data indicates that long and short term modulation of myocardial energetic costs of force generation is possible. The basic mechanisms for these myocardial alterations are discussed.

Key words

myothermal economy pressure overload hypothyroidism catecholamines positive inotropic drugs initial heat 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alpert NR, Mulieri LA (1977) The partitioning of altered mechanics in hypertrophied heart muscle between the sarcoplasmic reticulum and the contractile apparatus by means of myothermal measurements. Basic Res Cardiol 72: 153–159PubMedCrossRefGoogle Scholar
  2. 2.
    Alpert NR, Mulieri LA (1982) The functional significance of altered tension dependent heat in thyrotoxic myocardial hypertrophy. Basic Res Cardiol 75: 153–159Google Scholar
  3. 3.
    Alpert NR, Mulieri LA (1984) The inhomogeneity and appropriateness of the myocardial response to stress. Hypertension 6 (Suppl III): 50–57CrossRefGoogle Scholar
  4. 4.
    Barclay JK, Gibbs CL, Loiselle DS (1979) Stress as an index of metabolic cost in papillary muscle in the cat. Basic Res Cardiol 54: 594–603CrossRefGoogle Scholar
  5. 5.
    Blanchard EM, Mulieri LA, Alpert NR (1984) The effect of 2,3-Butenedione monoxime (BDM) on the relation between initial heat and mechanical output and on the activity of the contractile apparatus of rat papillary muscle. Conference of Muscle Energetics, Burlington, VermontGoogle Scholar
  6. 6.
    Coughlin P, Gibbs CL (1981) Cardiac energetics in short and long term hypertrophy induced by aortic coarctation. Cardiovasc Res 15: 623–631PubMedCrossRefGoogle Scholar
  7. 7.
    Ebrecht G, Rupp H, Jacob R (1982) Alterations of mechanical parameters in chemically skinned preparations of rat myocardium as a function of isoenzyme pattern of myosin. Basic Res Cardiol 77: 220–234PubMedCrossRefGoogle Scholar
  8. 8.
    Gibbs C, Loiselle D (1978) The energy output of tetanized cardiac muscle: species differences. Pflügers Arch 373: 31–38PubMedCrossRefGoogle Scholar
  9. 9.
    Gibbs CL (1967) Role of catecholamines in heat production in the myocardium. Circ Res 21 (Suppl III): 223–230Google Scholar
  10. 10.
    Gibbs CL, Gibson WR (1969) Effect of oubain on the energy output of rabbit cardiac muscle. Circ Res 24: 951PubMedCrossRefGoogle Scholar
  11. 11.
    Hoh, JFY, McGath PA, Hale PT (1977) Electrophoretic analysis of multiple forms of rat cardiac myosin: effects of hypophysectomy and thyroxine replacement. J Mol Cell Cardiol 10: 1053–1076CrossRefGoogle Scholar
  12. 12.
    Hoh JFY, Rosmanith HG (1983) Crossbridge dynamics in rat papillary muscles containing VI and V3 isomyosins: effects of adrenaline. J Mol Cell Cardiol 15 (Suppl 2): 65CrossRefGoogle Scholar
  13. 13.
    Holubarsch Ch, Alpert NR, Goulette R, Mulieri LA (1982) Heat production during hypoxic contracture of rat myocardium. Circ Res 51: 777–786PubMedCrossRefGoogle Scholar
  14. 14.
    Holubarsch Ch, Goulette RP, Mulieri LA, Alpert NR (1985) The economy of isometric force development, myosin isoenzyme pattern and myofibrillar ATPase activity in normal and hypothyroid rat myocardium. Circ Res 56: 78–86PubMedCrossRefGoogle Scholar
  15. 15.
    Holubarsch Ch, Goulette RP, Mulieri LA, Alpert NR (1983) Heat liberation in experimentally induced tetanic contractions of myocardium from normal and Goldblatt rats. In: Jacob R (ed) Cardiac Adaptation of Hemodynamic Overload, Training and Stress. Steinkopff Verlag, Darmstadt, pp 158–166CrossRefGoogle Scholar
  16. 16.
    Jacob R, Ebrecht G, Holubarsch Ch, Medugorac I (1980) Elastic and contractile properties of the myocardium in experimental cardiac hypertrophy in the rat. Methodological and pathophysiological considerations. Basic Res Cardiol 75: 253–261PubMedCrossRefGoogle Scholar
  17. 17.
    Kretzschmar KMM, Wilkie DR (1972) A new method for absolute heat measurements, utilizing the Peltier effect. J Physiol (Lond) 224: 18p - 20 pGoogle Scholar
  18. 18.
    Litten RZ, Martin BJ, Low RB, Alpert NR (1982) Altered myosin isoenzyme pattern from pressure-overload and thyrotoxic hypertrophied rabbit hearts. Circ Res 50: 856–864PubMedCrossRefGoogle Scholar
  19. 19.
    Loiselle DS, Wendt IR, Hoh JFY (1982) Energetic consequences of thyroid-modulated shifts in ventricular isomyosin distribution in the rat. J Muscle Res Cell Motil 3: 5–23PubMedCrossRefGoogle Scholar
  20. 20.
    Loiselle DS, Gibbs CL (1979) Species differences in cardiac energetics. Am J Physiol 237: H90 - H98PubMedGoogle Scholar
  21. 21.
    Mulieri LA, Luhr G, Trefry J, Alpert NR (1977) Metal-film thermopiles for use with rabbit right ventricular papillary muscles. Am J Physiol 233: C 136 - C156Google Scholar
  22. 22.
    Rüegg JC, Pfitzer G (1984) Myokardkontraktilität and Phosphorylierung der kontraktilen Proteine. In: Keul J, H-H Dickhuth (eds) Herzinsuffizienz. Pathophysiologie, Klinik and Therapie. Perimed Fachbuch-Verlagsgesellschaft, Erlangen, pp 53–56Google Scholar
  23. 23.
    Rupp H (1982) Polymorphic myosin as the common determinant of myofibrillar ATPase in different hemodynamic and thyroid states. Basic Res Cardiol 77: 34–46PubMedCrossRefGoogle Scholar
  24. 24.
    Scheuer J, Malhotra A, Hirsch C, Capasso J (1982) Physiologic cardiac hypertrophy corrects contractile protein abnormalities associated with pathologic hypertrophy of rats. J Clin Invest 70: 1300–1305PubMedCrossRefGoogle Scholar
  25. 25.
    Wikman-Coffelt J, Parmley WW, Mason DT (1979) The cardiac hypertrophy process. Analyses of factors determining pathological versus physiological development. Circ Res 45: 697–707PubMedCrossRefGoogle Scholar
  26. 26.
    Winegrad S, Weisberg A, Lin LE, McClellan G (1986) Adrenergic regulation of myosin adenosine Friphosphatase activity. Circ Res 58: 83–95PubMedCrossRefGoogle Scholar
  27. 27.
    Yasaki Y, Raben MS (1975) Effect of the thyroid state on the enzymatic characteristics of cardiac myosin. A difference in behavior of rat and rabbit cardiac myosin. Circ Res 36: 208–215CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • Ch. Holubarsch
    • 3
  • G. Hasenfuss
    • 1
  • E. Blanchard
    • 2
  • N. R. Alpert
    • 2
  • L. A. Mulieri
    • 2
  • H. Just
    • 1
  1. 1.Department of CardiologyMedizinische Universitätsklinik IIIFreiburgGermany
  2. 2.Department of Physiology & BiophysicsUniversity of VermontBurlingtonUSA
  3. 3.Department of CardiologyMedizinische UniversitätsklinikFreiburgGermany

Personalised recommendations