Numerical and Experimental Study of the Unsteady Viscous Flow Generated by an Impulsively Started Elliptic Cylinder

  • O. Daube
  • L. Ta Phuoc
  • M. Coutanceau
  • P. Monnet

Abstract

The unsteady incompressible viscous flow around an elliptic cylinder with an angle of attack is studied in this paper by means of experimental and numerical techniques. The experimental technique is a visualization one which also gives quantitative informations such as measurements of velocity. The numerical scheme is a finite difference one. Comparison between results obtained by both methods is presented and is found to be quite satisfactory.

Keywords

Vortex Vorticity Toll Balan 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Bouard, R., Coutanceau, M. (1980) The early stage of development of the wake…, J. Fluid Mech., 101, 3:583–607CrossRefGoogle Scholar
  2. [2]
    Collatz, L. (1966) The numerical treatment of differential equations, Ed. Springer-VerlagGoogle Scholar
  3. [3]
    Coutanceau, M., Bouard, R. (1977) Experimental determination of the main features of the viscous flow…, J. fluid Mech., 79, 231–257CrossRefGoogle Scholar
  4. [4]
    Daube, O., Ta Phuoc, L. (1978) Etude numérique d’écoulements instationnaires…, J. de Méca., 19, 1:651–678Google Scholar
  5. [5]
    Hirsh, R.S. (1975) Higher order accurate difference solution of fluid mechanics problems…, J. Comp. Phys., 19, 1:90–100MathSciNetMATHCrossRefGoogle Scholar
  6. [6]
    Ta Phuoc, L., Daube, O. (1977) Une méthode d’ordre O(h2) et O(h4) combinée…, C. Ren. Ac. Sc., Série A, 284, 1241–1243MATHGoogle Scholar
  7. [7]
    Ta Phuoc, L., Daube, O. (1980) Higher order accurate numerical of unsteady viscous flow…, WAM ASME, Chicago, Vortex flows, 155–171Google Scholar
  8. [8]
    Ta Phuoc, L. (1980) numerical analysis of unsteady secondary vortices…, J. Fluid Mech., 100, 111–128MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1982

Authors and Affiliations

  • O. Daube
    • 1
  • L. Ta Phuoc
    • 1
  • M. Coutanceau
    • 2
  • P. Monnet
    • 2
  1. 1.LIMSI-CNRSOrsay CedexFrance
  2. 2.LMF-Université de PoitiersPoitiers CedexFrance

Personalised recommendations