The function of Na+,K+-ATPase and its importance for drug action

  • T. Akera
Conference paper


The primary function of Na+,K+ -ATPase in cardiac and other excitable tissues is to maintain the resting, excitable state. In addition, the intracellular Ca2+ concentration is markedly affected by the balance between Na+,K+-ATPase activity (capacity of the sodium pump) and Na+ influx rate. The sodium pump in cardiac muscle has a substantial reserve capacity under normal conditions; however, a relatively modest sodium pump inhibition or an increase in Na+ influx rate elevates [Na+]i and therefore intracellular Ca2+ via Na+/Ca2+ exchange. The subsequent loading of the sarcoplasmic reticulum by Cat+ and an enhanced Ca2+ release upon membrane excitation appear to be responsible for the positive inotropic effect of a Na+,K+-ATPase inhibitor.


Influx Rate Cardiac Glycoside Reserve Capacity Positive Inotropic Effect Sodium Pump 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akera T, Fox AL, Greeff K (1981) In: Greeff K (ed) Handbook of Experimental Pharmacology, Vol 56/I, Cardiac Glycosides. Springer-Verlag, Heidelberg, pp 459–486CrossRefGoogle Scholar
  2. 2.
    Glitsch HG (1984) Basic Res Cardiol 79: 611–619PubMedCrossRefGoogle Scholar
  3. 3.
    Jennings RB, Schaper J, Hill ML, Steenbergen C, Jr, Reimer K (1985) Circ Res 56: 262–278PubMedCrossRefGoogle Scholar
  4. 4.
    Katano Y, Akera T, Temma K, Kennedy RH (1984) Eur J Pharmacol 105: 95–103PubMedCrossRefGoogle Scholar
  5. 5.
    Katano Y, Kennedy RH, Stemmer PM, Temma K, Akera T (1985) Eur J Pharmacol 113: 167–178PubMedCrossRefGoogle Scholar
  6. 6.
    Kennedy RH, Akera T, Brody TM (1983) Eur J Pharmacol 89: 199–209PubMedCrossRefGoogle Scholar
  7. 7.
    Kutscherskij E, Gunther J, Mehley E (1984) Experientia 40: 812–815PubMedCrossRefGoogle Scholar
  8. 8.
    Lin MH, Vander-Tuig JG, Romsos DR, Akera T, Leveille GA (1980) Amer J Physiol 238: E 193E 199CrossRefGoogle Scholar
  9. 9.
    Philipson KD, Edelman IS (1977) Amer J Physiol 232: C 196-C201Google Scholar
  10. 10.
    Repke K (1964) Klin Wochensch 42: 157–165CrossRefGoogle Scholar
  11. 11.
    Robinson JD, Flashner MS (1979) Biochim Biophys Acta 549: 145–176PubMedCrossRefGoogle Scholar
  12. 12.
    Schatzmann HJ (1953) HeIv Physiol Acta 11: 346–354Google Scholar
  13. 13.
    Skou JC (1960) Biochim Biophys Acta 42: 6–23CrossRefGoogle Scholar
  14. 14.
    Takeda K, Temma K, Akera T (1982) J Pharmacol Exp Ther 222: 132–139PubMedGoogle Scholar
  15. 15.
    Temma K, Akera T, Brody TM (1981) Eur J Pharmacol 76: 361–370PubMedCrossRefGoogle Scholar
  16. 16.
    Thomas G, Chung M, Cohen CJ (1985) Circ Res 56: 87–96PubMedCrossRefGoogle Scholar
  17. 17.
    Yamamoto S, Akera T, Kim D-H, Brody TM (1981) J Pharmacol Exp Ther 217: 701–707PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • T. Akera
    • 1
  1. 1.Department of Pharmacology and ToxicologyMichigan State UniversityEast LansingUSA

Personalised recommendations