The function of Na+,K+-ATPase and its importance for drug action

  • T. Akera
Conference paper


The primary function of Na+,K+ -ATPase in cardiac and other excitable tissues is to maintain the resting, excitable state. In addition, the intracellular Ca2+ concentration is markedly affected by the balance between Na+,K+-ATPase activity (capacity of the sodium pump) and Na+ influx rate. The sodium pump in cardiac muscle has a substantial reserve capacity under normal conditions; however, a relatively modest sodium pump inhibition or an increase in Na+ influx rate elevates [Na+]i and therefore intracellular Ca2+ via Na+/Ca2+ exchange. The subsequent loading of the sarcoplasmic reticulum by Cat+ and an enhanced Ca2+ release upon membrane excitation appear to be responsible for the positive inotropic effect of a Na+,K+-ATPase inhibitor.


Obesity Ischemia Vanadate Bicarbonate Cardiol 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akera T, Fox AL, Greeff K (1981) In: Greeff K (ed) Handbook of Experimental Pharmacology, Vol 56/I, Cardiac Glycosides. Springer-Verlag, Heidelberg, pp 459–486CrossRefGoogle Scholar
  2. 2.
    Glitsch HG (1984) Basic Res Cardiol 79: 611–619PubMedCrossRefGoogle Scholar
  3. 3.
    Jennings RB, Schaper J, Hill ML, Steenbergen C, Jr, Reimer K (1985) Circ Res 56: 262–278PubMedCrossRefGoogle Scholar
  4. 4.
    Katano Y, Akera T, Temma K, Kennedy RH (1984) Eur J Pharmacol 105: 95–103PubMedCrossRefGoogle Scholar
  5. 5.
    Katano Y, Kennedy RH, Stemmer PM, Temma K, Akera T (1985) Eur J Pharmacol 113: 167–178PubMedCrossRefGoogle Scholar
  6. 6.
    Kennedy RH, Akera T, Brody TM (1983) Eur J Pharmacol 89: 199–209PubMedCrossRefGoogle Scholar
  7. 7.
    Kutscherskij E, Gunther J, Mehley E (1984) Experientia 40: 812–815PubMedCrossRefGoogle Scholar
  8. 8.
    Lin MH, Vander-Tuig JG, Romsos DR, Akera T, Leveille GA (1980) Amer J Physiol 238: E 193E 199CrossRefGoogle Scholar
  9. 9.
    Philipson KD, Edelman IS (1977) Amer J Physiol 232: C 196-C201Google Scholar
  10. 10.
    Repke K (1964) Klin Wochensch 42: 157–165CrossRefGoogle Scholar
  11. 11.
    Robinson JD, Flashner MS (1979) Biochim Biophys Acta 549: 145–176PubMedCrossRefGoogle Scholar
  12. 12.
    Schatzmann HJ (1953) HeIv Physiol Acta 11: 346–354Google Scholar
  13. 13.
    Skou JC (1960) Biochim Biophys Acta 42: 6–23CrossRefGoogle Scholar
  14. 14.
    Takeda K, Temma K, Akera T (1982) J Pharmacol Exp Ther 222: 132–139PubMedGoogle Scholar
  15. 15.
    Temma K, Akera T, Brody TM (1981) Eur J Pharmacol 76: 361–370PubMedCrossRefGoogle Scholar
  16. 16.
    Thomas G, Chung M, Cohen CJ (1985) Circ Res 56: 87–96PubMedCrossRefGoogle Scholar
  17. 17.
    Yamamoto S, Akera T, Kim D-H, Brody TM (1981) J Pharmacol Exp Ther 217: 701–707PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • T. Akera
    • 1
  1. 1.Department of Pharmacology and ToxicologyMichigan State UniversityEast LansingUSA

Personalised recommendations