Skip to main content

Cardiac energetics: significance of mitochondria

  • Conference paper
Cardiac Energetics

Summary

The mitochondrial activity as the energy producing step during biological oxidation was observed at rest and its regulation by the energy consuming auxotonic contractile work, depending on the preload, afterload and beat rate in isolated superfused left guinea pig atria. The mitochondrial activity was measured by (1) continuous determination of the O2 uptake rate, (2) the rate of 14CO2 production from labelled glucose or FFA and (3) separate measurements of the atrial ATP-, ADP-, AMP-, CP- and NAD-concentrations, for determination of the energy state. Some results, with points of general interest, are reported and discussed, including this model, former studies about cardiac energetics and the efficiency of cardiac work, reviewed recently [21].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bittl JA, Ingwall JS (1986) The energetics of myocardial stretch, creatine kinase flux and oxygen consumption in the noncontracting rat heart. Circ Res 58: 378–383

    Article  PubMed  CAS  Google Scholar 

  2. Chance B, Williams GR (1956) Respiratory enzymes in oxidation phosphorylation. J Biol Chem 217: 409–427

    Google Scholar 

  3. Delabar U, Siess M (1979) Synthesis and degradation of NAD in guinea pig cardiac muscle: I. Dependence upon the extracellular concentration of nicotinamide and nicotinic acid. Basic Res Cardiol 74: 528–544

    Google Scholar 

  4. Delabar U, Siess M (1979) Synthesis and degradation of NAD in guinea pig cardiac muscle: II. Studies about the different biosynthetic pathways and the corresponding intermediates. Basic Res Cardiol 74: 571–593

    Google Scholar 

  5. Fiskum G, Lehninger AL (1982) Mitochondrial regulation of intracellular calcium. In: Wai Yiu Cheung (ed) Calcium and cell function, vol II. Academic Press, New York, pp 39–80

    Google Scholar 

  6. Gibbs CL (1983) Thermodynamics and cardiac energetics. In: Dintenfass L, Julian DG, Seaman GVF (eds) Heart perfusion, energetics and ischemia. Plenum Press, New York, NATO Scientific Affairs Division, Series A, vol 62, pp 549–576

    Google Scholar 

  7. Gibbs CL (1985) The cytoplasmatic phosphorylation potential. Its possible role in the control of myocardial respiration and cardiac contractility. J Mol Cell Cardiol 17: 727–731

    Article  PubMed  CAS  Google Scholar 

  8. Giesen J, Kammermeier H (1980) Relationship of phosphorylation potential and oxygen consumption in isolated perfused rat hearts. J Mol Cell Cardiol 12: 891–907

    Article  PubMed  CAS  Google Scholar 

  9. Kammermeier H, Schmid P, Jüngling E (1983) Free energy change of ATP hydrolysis: a causal factor of early hypoxic failure of the myocardium? J Mol Cell Cardiol 14: 267–277

    Article  Google Scholar 

  10. Loiselle DS (1985) The effect of temperature on the basal metabolism of cardiac muscle. Pflügers Arch 405: 163–169 (Europ J Physiol)

    Google Scholar 

  11. McCormack JG, Denton RM (1986) Cat+ ions as a link between functional demands and mitochondrial metabolism in the heart. In: Rupp H (ed) The regulations of heart function, basic concepts and clinical applications. Thieme Inc, New York, pp 186–200

    Google Scholar 

  12. Mommaerts WFHM (1970) What is the “Fenn”-effect? Muscle is a regulatory engine, the energy output of which is governed by the load. Naturwissenschaften 57: 326–330

    Article  Google Scholar 

  13. Rupp H (1986) The Ca+ + responsiveness of myofilaments in terms of ATPase activity, shortening velocity, and tension generation. In: Rupp H (ed) The regulation of heart function. Thieme Inc, New York, pp 234–248

    Google Scholar 

  14. Sheu S-S, Sharma VK, Uglesity A (1986) Na+—Ca++ exchange contributes to increase of cytosolic Ca + + concentration during depolarization in heart muscle. Ann J Physiol (Cell Physiol 19 ) 20: C651 — C656

    Google Scholar 

  15. Siess M (1977) Influences on the efficiency of cardiac work. Basic Res Cardiol 72: 299–305

    Article  PubMed  CAS  Google Scholar 

  16. Siess M (1983) Influences on the mitochondrial function of cardiac tissue. In: Sono KH and Nagano M (eds) Cardiac structure and metabolism. Tokyo, pp 1–42

    Google Scholar 

  17. Siess M, Delabar U, Stieler K, Leuchtner J, Teutsch I, Khattab A, El Hawary MB (1987) Protective and nonprotective effects of drugs on cardiac contractile activity and high energy phosphates during anoxia and after reoxygenation. In: Dhalla NS, Innes IR, Beamish RE (eds) Myocardial ischemia. Martinus Nijhoff Publ, Boston Mass, USA, pp 20 (in press)

    Google Scholar 

  18. Siess M, Keller HJ, Scharre E, Geisler J, Müller G (1970) The continuous and simultaneous measurement of OZ consumption, rate of decarboxylation of 14C substrates and the performance of spontaneous beating isolated heart atria of guinea pigs. J Mol Cell Cardiol 1: 261289

    Google Scholar 

  19. Siess M, Mensing HJ, Stieler K (1976) Investigations about the determinants of the myocardial oxygen consumption. In: Knoll J, Szekeres L, Papp JGy (eds) Symposium on pharmacology of the heart. Akadémiai Kiado, Budapest, pp 65–73

    Google Scholar 

  20. Siess M, Stieler K (1984) Methods for studying mitochondrial function in superfused cardiac muscle preparations. In: Dhalla NS (ed) Methods in studying cardiac membranes, vol I, CRC Press Inc, Boca Raton, FL/USA, pp 87–109

    Google Scholar 

  21. Siess M, Stieler K, Leuchtner J, Delabar U (1986) Some problems of cardiac energetics. In: Jacob R (ed) (1986) Controversial issues in cardiac pathophysiology. Basic Res Cardiol [Suppl 1] 81: 79–94

    Chapter  Google Scholar 

  22. Zeitler N (1986) Untersuchungen zum Gehalt energiereicher Phosphate and NAD im Herzvorhof bei Kalium-Depolarisation. Inaug Dissertation Medizinische Fakultät ( Theoret Medizin ), Tübingen, pp 1–76

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

R. Jacob Hj. Just Ch. Holubarsch

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Siess, M. (1987). Cardiac energetics: significance of mitochondria. In: Jacob, R., Just, H., Holubarsch, C. (eds) Cardiac Energetics. Steinkopff, Heidelberg. https://doi.org/10.1007/978-3-662-11289-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-11289-2_7

  • Publisher Name: Steinkopff, Heidelberg

  • Print ISBN: 978-3-662-11291-5

  • Online ISBN: 978-3-662-11289-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics