Skip to main content

Mechanics of rat myocardium revisited: Investigations of ultra-thin cardiac muscles under high energy demand

  • Conference paper
  • 200 Accesses

Summary

Disregarding the influence of thickness on elevated strength of isolated preparations inevitably leads to erroneous tension-frequency relations, especially in the range of high frequencies. Thus, much of the confusion in interpreting the atypical negative staircase phenomenon of the rat heart is due to this. In view of the fact that the rat has become the preferred laboratory animal in cardiological research, it was imperative to reinvestigate force-frequency relations using ultra-thin preparations of the rat right ventricle (d <0.1 mm). Contrary to popular opinion, it could be demonstrated that the rat myocardium shows a positive staircase in the range of physiological heart rates. An increase in tension is still attainable even at frequencies up to 600 min−1. The interval-strength relations exhibit a minimum at frequencies of 60–120 min−1, being shifted to higher frequencies with increasing diameter, vanishing completely for thick preparations (d > 1.0 mm). At high extracellular Ca++ concentration the positive staircase even of ultra-thin muscles is flattened. However, it can be reinforced when the strength, and thus the energy expenditure, is reduced by lowering the extension. The same is true for contractions under hypoxia.

From these findings it seems probable that many investigations on isolated heart muscles of the rat, as well as other species, are objectionable when done under high energy demand, as diffusion problems will certainly limit any rise in contractility.

Supported by the Deutsche Forschungsgemeinschaft.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brooks WM, Haseler LJ, Clarke K, Willis RJ (1986) Relation between the phosphocreatine to ATP ratio determined by 31P nuclear magnetic resonance spectroscopy and left ventricular function in underperfused guinea-pig heart. J Mol Cell Cardiol 18: 149–155

    Article  PubMed  CAS  Google Scholar 

  2. Buckley NM, Penefsky ZJ, Litwak RS (1972) Comparative force-frequency relationships in human and other mammalian ventricular myocardium. Pflügers Arch 332: 259–270

    Article  PubMed  CAS  Google Scholar 

  3. DiCara LV, Miller NE (1969) Heart rate learning in noncurarized state, transfer to the curarized state, and subsequent retraining in the noncurarized state. Physiol Behavior 4: 621–624

    Article  Google Scholar 

  4. Forester GV, Mainwood GW (1974) Interval dependent inotropic effects in the rat myocardium and the effect of calcium. Pflügers Arch 352: 189–196

    Article  PubMed  CAS  Google Scholar 

  5. Frezza WA, Bing OHL (1976) P02-modulated performance of cardiac muscle. Am J Physiol 231: 1620–1624

    PubMed  CAS  Google Scholar 

  6. Gulch RW, Jacob R (1975) Length-tension diagram and force-velocity relations of mammalian cardiac muscle under steady-state conditions. Pflügers Arch 355: 331–346

    Article  PubMed  CAS  Google Scholar 

  7. Gülch RW (1986) The concept of “end-systolic” pressure-volume and length-tension relations of the heart from a muscle physiologist’s point of view. Basic Res Cardiol [Suppl 1] 81: 51–57

    Google Scholar 

  8. Henderson AH, Brutsaert DL, Parmley WW, Sonnenblick EH (1969) Myocardial mechanics in papillary muscles of the rat and cat. Am J Physiol 217: 1273–1279

    PubMed  CAS  Google Scholar 

  9. Henry PD (1975) Positive staircase effect in the rat heart. Am J Physiol 228: 360–364

    PubMed  CAS  Google Scholar 

  10. Hoffman BF, Kelly JJ Jr (1959) Effect of rate and rhythm on contraction of rat papillary muscle. Am J Physiol 197: 1199–1204

    PubMed  CAS  Google Scholar 

  11. Jacobus WE, Taylor GJ, Hollis DP, Nunnally RL (1977) Phosphorus nuclear magnetic resonance of perfused working rat hearts. Nature 265: 756–758

    Article  PubMed  CAS  Google Scholar 

  12. Jacobus WE, Pores IH, Lucas SK, Weisfeldt ML, Flaherty JT (1982) Intracellular acidosis and contractility in the normal and ischemic heart as examined by 31P NMR. J Mol Cell Cardiol [Suppl 3] 14: 13–20

    Article  CAS  Google Scholar 

  13. Josephson IR, Sanchez-Chapula J, Brown AM (1984) Early outward current in rat single ventricular cells. Circ Res 54: 157–162

    Article  PubMed  CAS  Google Scholar 

  14. Kissling G, Rupp H (1986) The influence of myosin isoenzyme pattern on increase in myocardial oxygen consumption induced by catecholamines. Basic Res Cardiol [Suppl 1] 81: 103–115

    CAS  Google Scholar 

  15. Koch-Weser J (1963) Effect of rate changes on strength and time course of contraction of papillary muscle. Am J Physiol 204: 451–457

    PubMed  CAS  Google Scholar 

  16. Koch-Weser J, Blinks JR (1963) The influence of the interval between beats on myocardial contractility. Pharmacol Rev 15: 601–652

    PubMed  CAS  Google Scholar 

  17. Kruta V, Stejskalovâ J (1960) Allure de la contractilité et fréquence optimale du myocarde auriculaire chez quelques mammifères. Arch Intern Physiol 68: 152–164

    Article  CAS  Google Scholar 

  18. McDowall RJS, Munro AF, Zayat AF (1955) Sodium and cardiac muscle. J Physiol 130: 615624

    Google Scholar 

  19. Meijler FL (1962) Staircase, rest contractions, and potentiation in the isolated rat heart. Am J Physiol 202: 636–640

    PubMed  CAS  Google Scholar 

  20. Nilius B, Boldt W, Fechner G (1976) Auswirkungen der Hypertrophie auf das Potentiationsverhalten isolierter Ventrikelstreifen der Ratte. Acta Biol Med Germ 35: 1657–1664

    PubMed  CAS  Google Scholar 

  21. Payet MD, Schanne OF, Ruiz-Ceretti E (1981) Frequency dependence of the ionic currents determining the action potential repolarization in rat ventricular muscle. J Mol Cell Cardiol 13: 207–215

    Article  PubMed  CAS  Google Scholar 

  22. Penefsky ZJ, Buckley NM, Litwak RS (1972) Effect of temperature and calcium on force-frequency relationships in mammalian ventricular myocardium. Pflügers Arch 332: 271–282

    Article  PubMed  CAS  Google Scholar 

  23. Roos A, Boron WF (1981) Intracellular pH. Physiol Rev 61: 296–434

    PubMed  CAS  Google Scholar 

  24. Steenbergen C, Delleuw G, Rich T, Williamson JR (1977) Effects of acidosis and ischemia on contractility and intracellular pH of rat heart. Circ Res 41: 849–858

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

R. Jacob Hj. Just Ch. Holubarsch

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gülch, R.W., Ebrecht, G. (1987). Mechanics of rat myocardium revisited: Investigations of ultra-thin cardiac muscles under high energy demand. In: Jacob, R., Just, H., Holubarsch, C. (eds) Cardiac Energetics. Steinkopff, Heidelberg. https://doi.org/10.1007/978-3-662-11289-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-11289-2_25

  • Publisher Name: Steinkopff, Heidelberg

  • Print ISBN: 978-3-662-11291-5

  • Online ISBN: 978-3-662-11289-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics