On The Asymptotic Convergence of Boundary Integral Methods

  • W. L. Wendland
Conference paper
Part of the Boundary Elements book series (BOUNDARY, volume 3)

Abstract

The numerical treatment and corresponding error analysis of boundary integral equations hinges on the type of discretization due to the shape and type of trial functions used for the approximation of the unknown functions, due to the type of test functionals replacing the integral equations — which hold everywhere on the boundary — by a finite number of equations and due to the numerical integration. In reality further errors accumulate from round off effects. Here we are concerned with an error analysis which only takes into account the effects of the first three kinds. Since it seems to be a too pretentious task to find computable error bounds we consider so called asymptotic estimates.

Keywords

Manifold Convolution Pentech 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Abou El-Seoud, M.S. (1979) Numerische Behandlung von schwach singulären Integralgleichungen erster Art. Dissertation, Technische Hochschule Darmstadt, Germany.Google Scholar
  2. [2]
    Adams, R.A. (1975) Sobolev Spaces. Academic Press, New York.MATHGoogle Scholar
  3. [3]
    Aleksidze, M.A. (1978) The Solution of Boundary Value Problems with the Method of the Expansion with Respect to Nonorthonormal Functions. Nauka, Moscow (Russian).Google Scholar
  4. [4]
    Anselone, P.M. (1971) Collectively Compact Operator Approximation Theory. London, Prentice Hall.MATHGoogle Scholar
  5. [5]
    Aubin, J.P. (1972) Approximation of Elliptic Boundary-Value Problems. Wiley-Interscience, New York.MATHGoogle Scholar
  6. [6]
    Babuška, I. and Aziz, A.K. (1972) Survey lectures on the mathematical foundations of the finite element method. In: “The Mathematical Foundation of the Finite Element Method with Applications to Partial Differential Equations” (Aziz, A.K. Ed.) 3–359, New York, Academic Press.Google Scholar
  7. [7]
    Bramble, J. and Schatz, A. (1970) Rayleigh-Ritz-Galerkin methods for Dirichlet’s problem using subspaces without boundary conditions. Comm. Pure Appl. Math. 23:653–675.MathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    Ciarlet, P.G. (1978) The Finite Element Method for Elliptic Problems. North Holland, Amsterdam.MATHGoogle Scholar
  9. [9]
    Giroire, J. and Nedelec, J.C. (1978) Numerical solution of an exterior Neumann problem using a double layer potential. Math. of Comp. 32:973–990.MathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    Hildebrandt, St. and Wienholtz, E. (1964) Constructive proofs of representation theorems in separable Hilbert space. Comm. Pure Appl. Math. 17:369–373.MathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    Hsiao, G.C., Kopp, P. and Wendland, W.L. (1980) A Galerkin collocation method for some integral equations of the first kind. Computing 25: 89–130.MathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    Hsiao, G.C., Kopp, P. and Wendland, W.L. (1980) The synthesis of the collocation and the Galerkin method applied to some integral equations of the first kind. In: C.A. Brebbia (ed.): New Developments in Boundary Element Methods. CML Publ. Southampton: 122–136.Google Scholar
  13. [13]
    Hsiao, G.C., Kopp, P. and Wendland, W.L.: Some applications of a Galerkin-collocation method for integral equations of the first kind. In preparation.Google Scholar
  14. [14]
    Hsiao, G.C. and Mac Camy, R.C. (1973) Solution of boundary value problems by integral equations of the first kind. SIAM Review 15:687–705.MathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    Hsiao, G.C. and Wendland, W.L.: The Aubin-Nitsche lemma for integral equations. To appear.Google Scholar
  16. [16]
    Jaswon, M.A. and Symm, G.T. (1977) Integral Equation Methods in Potential Theory and Elastostatics. Academic Press London.MATHGoogle Scholar
  17. [17]
    Kohn, J.J. and Nirenberg, L. (1965) On the algebra of pseudodifferential operators. Comm. Pure Appl. Math. 18:269–305.MathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    Michlin, S.G. (1962) Variationsmethoden der Mathematischen Physik, Akademie-Verlag Berlin.MATHGoogle Scholar
  19. [19]
    Michlin, S.G. and Prößdorf, S. (1980) Singuläre Integraloperatoren. Akademie-Verlag Berlin.MATHGoogle Scholar
  20. [20]
    Muskhelishvili, N.I. (1953) Singular Integral Equations. Noordhoff Groningen.Google Scholar
  21. [21]
    Nédelć, J.C. (1976) Curved finite element methods for the solution of singular integral equations on surfaces in IR3. Comp. Math. Appl. Mech. Engin. 8:61–80.CrossRefGoogle Scholar
  22. [22]
    Nédeléc, J.C. (1980) Formulations variationelles de quelques équations intégrales faisant intervenir des parties finies. In: R. Shaw et al. (ed.): Innovative Numerical Analysis for the Engineering Sciences. Univ. Press of Virginia, Charlottesville: 517–524.Google Scholar
  23. [23]
    Nitsche, J.A. (1970) Zur Konvergenz von Näherungsverfahren bezüglich verschiedener Normen. Num. Math. 15:224–228.MathSciNetCrossRefMATHGoogle Scholar
  24. [24]
    Prössdorf, S. and Schmidt, G.: A finite element collocation method for singular integral equations. To appear.Google Scholar
  25. [25]
    Prössdorf, S. and Silbermann, B. (1977) Projektionsverfahren und die näherungsweise Lösung singulärer Gleichungen. B.G. Teubner Leipzig.MATHGoogle Scholar
  26. [26]
    Richter, G.R. (1978) Numerical solution of integral equations of the first kind with nonsmooth kernels. SIAM J. Numer. Anal. 17:511–522.CrossRefGoogle Scholar
  27. [27]
    Riesz, F. and Nagy, B.Sz. (1956) Vorlesungen über Funktionalanalysis. Dt. Verl. Wiss. Berlin.MATHGoogle Scholar
  28. [28]
    Treves, F. (1980) Introduction to Pseudodifferential and Fourier Integral Operators I. Plenum Press, New York and London.Google Scholar
  29. [29]
    Voronin, V.V. and Cecoho, V.A. (1974) An interpolation method for solving an integral equation of the first kind with a logarithmic singularity. Dokl. Akad. Nauk SSR 216; Soviet Math. Dokl. 15:949–952.MATHGoogle Scholar
  30. [30]
    Wendland, W.L. (1980) On Galerkin collocation methods for integral equations of elliptic boundary value problems. In: J. Albrecht and L. Collatz (ed.): Numerical Treatment of Integral Equations. Intern. Ser. Num. Math., Birkhäuser Basel, 53:244–275.Google Scholar
  31. [31]
    Wendland, W.L.: On the asymptotic convergence of the collocation method for a class of strongly elliptic integral equations. In preparation.Google Scholar
  32. [32]
    Wendland, W.L.: Asymptotic accuracy and convergence. In: C. Brebbia (ed.): Progress in Boundary Elements, Vol. 1, Pentech Press, London, 1981.Google Scholar
  33. [33]
    Wendland, W.L., Stephan, E. and Hsiao, G.C. (1979) On the integral equation method for the plane mixed boundary value problem of the Laplacian. Math. Meth. in the Appl. Sci. 1:265–321.MathSciNetADSCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • W. L. Wendland
    • 1
    • 2
  1. 1.Technische Hochschule DarmstadtGermany
  2. 2.University Of DelawareNewarkUSA

Personalised recommendations