Continuum Radiation

  • Kenneth R. Lang
Part of the Springer Study Edition book series (SSE)

Abstract

The experimentally determined Coulomb force, F, between two static point charges, q 1 and q 2 is (Coulomb, 1785)
$$F = \frac{{{q_1}{q_2}}}{{{R^2}}}{n_r}$$
(1–1)
where R is the distance between the charges, and n r is a unit vector directed from one charge to the other. The static electric field, E, of a point charge q 1 is defined so that
$$F = {q_2}E,\;where\,E = \frac{{{q_1}}}{{{R^2}}}{n_r}$$
(1–2)
and R is the distance from q1 Integrating equation (1–2) over a closed spherical surface we obtain Gauss’s law
$$\oint\limits_s {E \cdot nds = 4\pi q = 4\pi \int\limits_v {\rho dv} } $$
(1–3)
where ρ is the charge density, denotes the closed surface integral, En is the component of E which is normal to the surface element ds, and is the \(\int\limits_v {\rho dv} \) amount of charge within the closed surface.

Keywords

Permeability Convection Mercury Agate Recombination 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aarons, J., Whitney, H. E., Allen, R. S.: Global morphology of ionospheric scintillations. Proc. I.E.E.E. 59(2), 159(1971).Google Scholar
  2. Airy, G. B.: On the diffraction of an object-glass with circular aperture. Trans. Camb. Phil. Soc. 5, 283 (1835).ADSGoogle Scholar
  3. Alfvén, H., Herlofson, N.: Cosmic radiation and radio stars. Phys. Rev. 78, 616 (1950).ADSGoogle Scholar
  4. Altenhoff, W., Mezger, P. G., Strassl, H., Wendker, H., Westerhout, G.: Radio astronomical measurements at 2.7 KMHz. Veroff Sternwarte, Bonn 59, 48 (1960).Google Scholar
  5. Ampère, A. M.: Sur l’action mutuelle d’un aiment et d’un conduct. voltaique. Ann. Chim. Phys. 37 (1827).Google Scholar
  6. Appleton, E. V.: Wireless studies of the ionosphere. J. Inst. Elec. Engrs. (London) 71, 642 (1932).Google Scholar
  7. Beaujardière, O. de la: L’évolution du spectre de rayonnement synchrotron. Ann. Astrophys. 29, 345 (1966).ADSGoogle Scholar
  8. Bekefi, G.: Radiation processes in plasmas. New York: Wiley 1966.Google Scholar
  9. Berge, G. L., Greisen, E. W.: High-resolution interferometry of Venus at 3.12-cm wavelength. Ap. J. 156, 1125 (1969).ADSGoogle Scholar
  10. Bethe, H. A.: The influence of screening on the creation and stopping of electrons. Proc. Camb. Phil. Soc. 30, 524 (1930).ADSGoogle Scholar
  11. Bethe, H. A., Heitler, W.: On the stopping of fast particles and on the creation of positive electrons. Proc. Roy. Soc. London A 146, 83 (1934).ADSGoogle Scholar
  12. Biot, J. B., Savart, F.: Sur le magnétisme de la pile de Volta. Ann. Chimie 15, 222 (1820).Google Scholar
  13. Blumenthal, G. R., Gould, R. J.: Bremsstrahlung, synchrotron radiation, and Compton scattering of high-energy electrons traversing dilute gases: Rev. Mod. Phys. 42 (2), 237 (1970).ADSGoogle Scholar
  14. Bohm, D., Gross, E. P.: Theory of plasma oscillations: A. Origin of medium-like behavior; B. Excitation and damping of oscillations. Phys. Rev. 75, 1851, 1854 (1949).ADSGoogle Scholar
  15. Bohr, N.: On the decrease of velocity of swiftly moving electrified particles in passing through matter. Phil. Mag. 30, 581 (1915).Google Scholar
  16. Boltzmann, L. von: Über eine von Hrn. Bartoli entdeckte Beziehung der Wärmestrahlung zum zweiten Hauptsatze (On a relation between thermal radiation and the second law of thermodynamics, discovered by Bartoli). Ann. Phys. 22, 31 (1884).Google Scholar
  17. Bond, G. P.: Light of the moon and of Jupiter. Mem. Amer. Ac. 8, 221 (1863).Google Scholar
  18. Booker, H. G.: A theory of scattering by nonisotropic irregularities with application to radar reflections from the aurora. J. Atmos. Terr. Phys. 8, 204 (1956).Google Scholar
  19. Booker, H. G., Gordon, W. E.: A theory of radio scattering in the troposphere. Proc. I.R.E. 38, 401 (1950).Google Scholar
  20. Booker, H. G., Ratcliffe, J. A., Shinn, D. H.: Diffraction from an irregular screen with applications to ionospheric problems. Phil. Trans. Roy. Soc. London A 242, 75 (1950).MathSciNetGoogle Scholar
  21. Born, M., Wolf, E.: Principles of optics. New York: Pergamon Press 1970.Google Scholar
  22. Brewster, D.: On the laws which regulate the polarization of light by reflection from transparent bodies. Phil. Trans. 15, 125 (1815).Google Scholar
  23. Briggs, B. H., Phillips, G. J., Shinn, D. H.: The analysis of observations on spaced receivers of the fading of radio signals. Proc. Roy. Soc. London B 63, 106 (1950).Google Scholar
  24. Brown, R. L., Mathews, W. G.: Theoretical continuous spectra from gaseous nebulae. Ap. J. 160, 939 (1970).ADSGoogle Scholar
  25. Brussard, P. J., Hulst, H. C van de: Approximation formulas for non-relativistic bremsstrahlung and average Gaunt factors for a Maxwellian electron gas. Rev. Mod. Phys. 34 (3), 507 (1962).ADSGoogle Scholar
  26. Buneman, O.: Scattering of radiation by the fluctuations in a nonequilibrium plasma. J. Geophys. Res. 67 (5), 2050 (1962).ADSGoogle Scholar
  27. Burbidge, G. R.: Estimates of the total energy in particles and magnetic field in the non-thermal radio sources. Ap. J. 129, 849 (1959).ADSGoogle Scholar
  28. Burgess, A.: The hydrogen recombination spectrum. M.N.R.A.S. 118, 477 (1958).ADSGoogle Scholar
  29. Canuto, V., Chiu, H. Y., Fassio-Canuto, L.: Electron bremsstrahlung in intense magnetic fields. Phys. Rev. 185, 1607 (1969).ADSGoogle Scholar
  30. Canuto, V., Chiu, H. Y.: Nonrelativistic electron bremsstrahlung in a strongly magnetized plasma. Phys. Rev. A 2, 518 (1970).ADSMATHGoogle Scholar
  31. Canuto, V., Chiu, H. Y.: Intense magnetic fields in astrophysics. Space Sci. Rev. 12, 3 (1971).ADSGoogle Scholar
  32. Canuto, V., Lodenquai, J., Ruderman, M.: Thomson scattering in a strong magnetic field. Phys. Rev. D 3, 2303 (1971).ADSGoogle Scholar
  33. Cerenkov, P. A.: Visible radiation produced by electrons moving in a medium with velocities exceeding that of light. Phys. Rev. 52, 378 (1937). (Cf. J. V. Jelley: Cerenkov Radiation and its Applications. New York: Pergamon Press 1958.)ADSGoogle Scholar
  34. Chandrasekhar, S.: A statistical basis for the theory of stellar scintillation. M.N.R.A.S. 112, 475 (1952).MathSciNetADSMATHGoogle Scholar
  35. Chandrasekhar, S., Breen, F. H.: On the continuous absorption coefficient of the negative hydrogen ion. Ap. J. 104, 430 (1946).ADSGoogle Scholar
  36. Chiu, H. Y., Canuto, V., Fassio-Canuto, L.: Nature of radio and optical emissions from pulsars. Nature 221, 529(1969).ADSGoogle Scholar
  37. Chiu, H. Y., Fassio-Canuto, L.: Quantized synchrotron radiation in intense magnetic fields. Phys. Rev. 185, 1614(1969).ADSGoogle Scholar
  38. Clark, B. G., Kuz’min, A. D.: The measurement of the polarization and brightness distribution of Venus at 10.6-cm wavelength. Ap. J. 142, 23 (1965).ADSGoogle Scholar
  39. Clarke, R. W., Broten, N. W., Legg, T. H., Locke, J. L., Yen, J. L.: Long baseline interferometer observations at 408 and 448 MHz II—The interpretation of the observations. M.N.R.A.S. 146, 381 (1969).ADSGoogle Scholar
  40. Cohen, M. H.: Radiation in a plasma. I. Cerenkov effect. Phys. Rev. 123 (3), 711 (1961).MathSciNetADSMATHGoogle Scholar
  41. Cohen, M. H., Gundermann, E. J., Hardebeck, H. E. Sharp, L. E.: Interplanetary scintillations, II. Observations. Ap. J. 147, 449 (1967).Google Scholar
  42. Compton, A. H.: A quantum theory of the scattering of X-rays by light elements. Phys. Rev. 21, 207, 483 (1923).ADSGoogle Scholar
  43. Compton, A. H.: The spectrum of scattered X-rays. Phys. Rev. 22 (5), 409 (1923).ADSGoogle Scholar
  44. Cooper, J.: Plasma spectroscopy. Rpt. Prog. Phys. 29, 2 (1966).Google Scholar
  45. Coulomb, C. A.: Sur l’électricité et le magnétisme. Mem. lAcad. (1785).Google Scholar
  46. Culhane, J. L.: Thermal continuum radiation from coronal plasmas at soft X-ray wavelengths. M.N.R.A.S. 144, 375(1969).ADSGoogle Scholar
  47. Davy, Sir H.: Further researches on the magnetic phenomena produced by electricity. Phil. Trans. 111, 425(1821).Google Scholar
  48. Debye, P. von: Der Lichtdruck auf Kugeln von beliebigem Material (The light pressure on spheres of arbitrary material). Ann. Phys. 30, 57 (1909).MATHGoogle Scholar
  49. Debye, P. von, Hückel, E.: Zur Theorie der Elektrolyte: I. Gefrierpunktserniedrigung und verwandte Erscheinungen; II. Das Grenzgesetz für die elektrische Leitfähigkeit (On the theory of electrolytes: I. Lowering of the freezing point and related phenomena; II. The limiting laws for the electrical conductivity). Phys. Z. 24, 185 (1923).MATHGoogle Scholar
  50. Dennison, P. A., Hewish, A.: The solar wind outside the plane of the ecliptic. Nature 213, 343 (1967).ADSGoogle Scholar
  51. Dickel, J. R., Degioanni, J. J., Goodman, G. C.: The microwave spectrum of Jupiter. Radio Science 5 (2), 517 (1970).ADSGoogle Scholar
  52. Ditchburn, R. W., Öpik, U.: Photoionization processes. In: Atomic and molecular processes (ed. D. R. Bates). New York: Academic Press 1962.Google Scholar
  53. Dombrovski, V. A.: On the nature of the radiation from the Crab nebula. Dokl. Acad. Nauk. S. S. S. R. 94, 1021 (1954).Google Scholar
  54. Donahue, T. M.: The significance of the absence of primary electrons for theories of the origin of the cosmic radiation. Phys. Rev. 84 (5), 972 (1951).ADSGoogle Scholar
  55. Doppler, C.: Über das Farbige Licht der Doppelsterne u. s.w. (On the colored light of double stars, etc.). Abhandlungen d. k. Böhmischen Gesell. d. Wiss. 2, 467 (1843).Google Scholar
  56. Dougherty, J. P., Farley, D. T.: A theory of incoherent scattering of radio waves by a plasma. Proc. Roy. Soc. London A 259, 79 (1960).ADSMATHGoogle Scholar
  57. Eidman, V. Ya.: Investigation of the radiation of an electron moving in a magnetoactive medium. Sov. Phys. J.E.T.P. 7, 91 (1958). (Corrections in Sov. Phys. J.E.T.P. 9, 947 (1959)).Google Scholar
  58. Einstein, A. von: Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt (On a heuristic point of view concerning the generation and transformation of light). Ann. Physik 17, 132 (1905).ADSMATHGoogle Scholar
  59. Elwert, G. von: Die weiche Röntgenstrahlung der ungestörten Sonnenkorona (The soft X-ray radiation of the undisturbed solar corona). Z. Naturforschung, 9, 637 (1954).ADSGoogle Scholar
  60. Epstein, R. I., Feldman, P. A.: Synchrotron radiation from electrons in helical orbits. Ap. J. 150, L 109 (1967).ADSGoogle Scholar
  61. Erber, T.: High-energy electromagnetic conversion processes in intense magnetic fields. Rev. Mod. Phys. 38, 626 (1966).MathSciNetADSGoogle Scholar
  62. Evans, J. V.: Radar studies of planetary surfaces. Ann. Rev. Astron. Astrophys. 7, 201 (1969).ADSGoogle Scholar
  63. Faraday, M.: On static electrical inductive action. Phil. Mag. 22, 200 (1843).Google Scholar
  64. Faraday, M.: Experimental researches in electricity. London: R. Taylor 1844. Repr. New York: Dover 1952.Google Scholar
  65. Farley, D. T.: A theory of incoherent scattering of radio waves by a plasma: 4. The effect of unequal ion and electron temperatures. J. Geophys. Res. 17, 4091 (1966).ADSGoogle Scholar
  66. Feenberg, E.: The scattering of slow electrons by neutral atoms. Phys. Rev. 40, 40 (1932).ADSGoogle Scholar
  67. Feenberg, E., Primakoff, H.: Interaction of cosmic-ray primaries with sunlight and starlight. Phys. Rev. 73 (5), 449 (1948).ADSMATHGoogle Scholar
  68. Fejer, J. A.: The diffraction of waves in passing through an irregular refracting medium. Proc. Roy. Soc. London A 220, 455 (1953).MathSciNetADSMATHGoogle Scholar
  69. Fejer, J. A.: Scattering of radio waves by an ionized gas in thermal equilibrium. Can. J. Phys. 38, 1114(1960).MathSciNetADSMATHGoogle Scholar
  70. Fejer, J. A.: Radio-wave scattering by an ionized gas in thermal equilibrium. J. Geophys. Res. 65, 2635 (1960).ADSGoogle Scholar
  71. Felten, J. E., Morrison, P.: Recoil photons from scattering of starlight by relativistic electrons. Phys. Rev. Lett. 10 (10), 453 (1963).ADSGoogle Scholar
  72. Felten, J. E., Morrison, P.: Omnidirectional inverse Compton and synchrotron radiation from cosmic distributions of fast electrons and thermal photons. Ap. J. 146, 686 (1966).ADSGoogle Scholar
  73. Fermat, P.: Oeuvres de Fermat. Paris 2, 354 (1891).Google Scholar
  74. Fermi, E.: The ionization loss of energy in gases and in condensed materials. Phys. Rev. 57, 485 (1940).ADSGoogle Scholar
  75. Fresnel, A. J.: Explication de la réfraction dans le système des ondes. Mem. de l Acad. 11, 893 (1822).Google Scholar
  76. Gaunt, J. A.: Continuous absorption. Phil. Trans. Roy. Soc. London A 229, 163 (1930).ADSMATHGoogle Scholar
  77. Ginzburg, V. L.: The origin of cosmic rays and radio astronomy. Usp. Fiz. Nauk. 51, 343 (1953).Google Scholar
  78. Ginzburg, V. L.: Propagation of electromagnetic waves in a plasma. New York: Gordon and Breach 1961.Google Scholar
  79. Ginzburg, V.L.: Elementary processes for cosmic ray astrophysics. New York: Gordon and Breach 1969.Google Scholar
  80. Ginzburg, V.L., Syrovatskii, S. I.: The origin of cosmic rays. New York: Macmillan 1964.Google Scholar
  81. Ginzburg, V. L., Syrovatskii, S. I. Cosmic magnetobremsstrahlung (Synchrotron radiation). Ann. Rev. Astron. Astrophys. 3, 297 (1965).ADSGoogle Scholar
  82. Ginzburg, V. L.: Elementary processes for cosmic ray astrophysics. New York: Gordon and Breach 1969.Google Scholar
  83. Ginzburg, V. L., Syrovatskii, S. I.: The origin of cosmic rays. New York: Macmillan 1964.Google Scholar
  84. Ginzburg, V. L., Syrovatskii, S. I.: Cosmic magnetobremsstrahlung (Synchrotron radiation). Ann. Rev. Astron. Astrophys. 3, 297 (1965).ADSGoogle Scholar
  85. Ginzburg, V. L., Zhelezniakov, V. V.: On the possible mechanisms of sporadic solar radio emission (Radiation in an isotropic plasma). Soviet Astron. 2, 653 (1958).ADSGoogle Scholar
  86. Ginzburg, V. L., Zhelezniakov, V. V.: On the mechanisms of sporadic solar radio emission. In: Paris symposium on radio astronomy (ed. R. N. Bracewell). Stanford, Calif.: Stanford Univ. Press 1959.Google Scholar
  87. Goldreich, P., Morrison, P.: On the absorption of gamma rays in intergalactic space. Sov. Phys. J.E.T.P. 18, 239(1964).Google Scholar
  88. Gould, R. J., Schréder, G.: Opacity of the universe to high-energy photons. Phys. Rev. Lett. 16 (6), 252 (1966).ADSGoogle Scholar
  89. Green, P. E.: Radar measurements of target scattering properties. In: Radar astronomy (ed. J. V. Evans, T. Hagfors). New York: McGraw-Hill 1968.Google Scholar
  90. Hagfors, T.: Some properties of radio waves reflected from the moon and their relation to the lunar surface. J. Geophys. Res. 66 (3), 777 (1961).MathSciNetADSGoogle Scholar
  91. Hagfors, T.: Density fluctuations in a plasma in a magnetic field, with applications to the ionosphere. J. Geophys. Res. 66 (6), 1699 (1961).MathSciNetADSGoogle Scholar
  92. Hagfors, T.: Backscattering from an undulating surface with applications to radar returns from the moon. J. Geophys. Res. 69 (18), 3779 (1964).ADSGoogle Scholar
  93. Hagfors, T.: Remote probing of the moon by infrared and microwave emissions and by radar. Radio Science 5, 189 (1970).ADSGoogle Scholar
  94. Harris, D. E., Zeissig, G. A., Lovelace, R. V.: The minimum observable diameter of radio sources. Astron. Astrophys. 8, 98 (1970).ADSGoogle Scholar
  95. Hartree, D. R.: The propagation of electromagnetic waves in a refracting medium in a magnetic field. Proc. Camb. Phil. Soc. 27, 143 (1931).ADSGoogle Scholar
  96. Heaviside, O.: On the electromagnetic effects due to the motion of electrification through a dielectric. Phil. Mag. 27, 324(1889).MATHGoogle Scholar
  97. Heaviside, O.: The waste of energy from a moving electron. Nature 67, 6 (1902).ADSGoogle Scholar
  98. Heaviside, O.: The radiation from an electron moving in an elliptic, or any other orbit. Nature 69, 342 (1904).ADSGoogle Scholar
  99. Heiles, C. E., Drake, F. D.: The polarization and intensity of thermal radiation from a planetary surface. Icarus 2, 291 (1963).ADSGoogle Scholar
  100. Hehler, W.: The quantum theory of radiation. Oxford: Oxford University Press 1954.Google Scholar
  101. Hertz, H.: Über die Beziehungen zwischen Licht und Elektrizität (On the relations between light and electricity). Gesammelte Werke 1, 340 (1889).Google Scholar
  102. Hertz, H.: Die Kräfte elektrischer Schwingungen, behandelt nach der Maxwellschen Theorie (The force of electrical oscillations treated with the Maxwell theory). Ann. Phys. 36, 1 (1889).Google Scholar
  103. Hewish, A.: The diffraction of radio waves in passing through a phase-changing ionosphere. Proc. Roy. Soc. London A 209, 81 (1951).ADSGoogle Scholar
  104. Hjellming, R. M., Churchwell, E.: An analysis of radio recombination lines emitted by the Orion nebula. Astrophys. Lett. 4, 165 (1969).ADSGoogle Scholar
  105. Hoyle, F., Burbidge, G. R., Sargent, W. L. W.: On the nature of the quasi-stellar sources. Nature 209, 751 (1966).ADSGoogle Scholar
  106. Hulst, H. C. van de: On the attenuation of plane waves by obstacles of arbitrary size and form. Physica 15, 740 (1949).ADSMATHGoogle Scholar
  107. Hulst, H. C. van de: Light scattering by small particles. New York: Wiley 1957.Google Scholar
  108. Jackson, J. D.: Classical electrodynamics. New York: Wiley 1962.Google Scholar
  109. Jauch, J. M., Rohrlich, F.: The theory of protons and electrons. Reading, Mass.: Addison-Wesley 1955.Google Scholar
  110. Jeans, Sir J. H.: On the partition of energy between matter and aether. Phil. Mag. 10, 91 (1905).MATHGoogle Scholar
  111. Jeans, Sir J. H.: Temperature-radiation and the partition of energy in continuous media. Phil. Mag. 17, 229 (1909).MATHGoogle Scholar
  112. Jokipii, J. R., Hollweg, J. V.: Interplanetary scintillations and the structure of solar-wind fluctuations. Ap. J. 160, 745 (1970).ADSGoogle Scholar
  113. Kardashev, N. S.: Nonstationariness of spectra of young sources of nonthermal radio emission. Soviet Astron. 6, 317(1962).ADSGoogle Scholar
  114. Karzas, W. J., Latter, R.: Electron radiative transitions in a Coulomb field. Ap. J. Suppl. 6, 167 (1961).ADSGoogle Scholar
  115. Kellermann, K. I.: The radio source 1934–63. Austr. J. Phys. 19, 195 (1966).ADSGoogle Scholar
  116. Kellermann, K. I.: Thermal radio emission from the major planets. Radio Science 5 (2), 487 (1970).ADSGoogle Scholar
  117. Kellermann, K. I., Pauliny-Toth, I. I. K.: The spectra of opaque radio sources. Ap. J. 155, L 71 (1969).ADSGoogle Scholar
  118. Kellermann, K. I., Pauliny-Toth, I. I. K., Williams, P. J. S.: The spectra of radio sources in the revised 3 C catalogue. Ap. J. 157, 1 (1969).ADSGoogle Scholar
  119. Kelvin, Lord (W. Thomson): A mathematical theory of magnetism. Phil. Mag. 37, 241 (1850).Google Scholar
  120. Kelvin, Lord (W. Thomson): Transient electric currents. Proc. Glascow Phil. Soc. 3, 281 (1835).Google Scholar
  121. Kirchhoff, H.: On the simultaneous emission and absorption of rays of the same definite refrangibility. Phil. Mag. 19, 193 (1860).Google Scholar
  122. Kirchhoff, H.: On a new proposition in the theory of heat. Phil. Mag. 21, 240 (1860). See also: Gesammelte Abhandlungen. Leipzig: J. A. Barth 1882.Google Scholar
  123. Klein, O., Nishina, Y.: Über die Streuung von Strahlung durch freie Elektronen nach der neuen relativistischen Quantendynamik von Dirac (On the scattering of radiation by free electrons according to the new relativistic quantum dynamics by Dirac). Z. Physik 52, 853 (1929).ADSMATHGoogle Scholar
  124. Kramers, H. A.: On the theory of X-ray absorption and of the continuous X-ray spectrum. Phil. Mag. 46, 836 (1923).Google Scholar
  125. Kramers, H. A.: The law of dispersion and Bohr’s theory of spectra. Nature 113, 673 (1924).ADSGoogle Scholar
  126. Kronig, R. de L., Kramers, H. A.: Zur Theorie der Absorption und Dispersion in den Röntgenspektren (Theory of absorption and dispersion in X-ray spectra). Z. Physik 48, 174 (1928).ADSMATHGoogle Scholar
  127. Ladenburg, R. von: Die Quantentheoretische Deutung der Zahl der Dispersionselektronen (The quantum theory interpretation of the number of scattering electrons). Z. Physik 4, 451 (1921).ADSGoogle Scholar
  128. Lambert, J. H.: Photometria, sive de mensura et gradibus luminis, colorum et umbrae. Augsburg 1760.Google Scholar
  129. Landau, L. D.: On the vibrations of the electronic plasma. J. Phys. (U.S.S.R.) 10, 25 (1946).MATHGoogle Scholar
  130. Landau, L. D., Lifshitz, E. M.: The classical theory of fields. Reading, Mass.: Addison-Wesley 1962.MATHGoogle Scholar
  131. Lang, K. R.: Interstellar scintillation of pulsar radiation. Ap. J. 164, 249 (1971).ADSGoogle Scholar
  132. Lang, K. R., Rickett, B. J.: Size and motion of the interstellar scintillation pattern from observations of CP 1133. Nature 225, 528 (1970).ADSGoogle Scholar
  133. Larmor, Sir J.: On the theory of the magnetic influence on spectra; and on the radiation from moving ions. Phil. Mag. 44, 503 (1897).MATHGoogle Scholar
  134. Legg, M. P. C., Westfold, K. C.: Elliptic polarization of synchrotron radiation. Ap. J. 154, 499 (1968).ADSGoogle Scholar
  135. Le Roux, E.: Étude théorique de rayonnement synchrotron des radiosources. Ann. Astrophys. 24, 71 (1961).ADSGoogle Scholar
  136. Liemohn, H. B.: Radiation from electrons in a magnetoplasma. J. Res. Nat. Bur. Stands. USNC-URSI Radio Science 69D, 741 (1965).Google Scholar
  137. Liénard, A. M.: Théorie de Lorentz, Théorie de Larmor et celle de Lorentz. Éclairage électr. 14, 16 (1898).Google Scholar
  138. Lorentz, H. A.: Über die Beziehung zwischen der Fortpflanzungsgeschwindigkeit des Lichtes und der Körperdichte (Concerning the relation between the velocity of propagation of light and the density and composition of media). Ann. Phys. 9, 641 (1880).MATHGoogle Scholar
  139. Lorentz, H. A.: La théorie électromagnétique de Maxwell et son application aux corps mouvants. Archives Neerl, 25, 363 (1892).Google Scholar
  140. Lorentz, H. A.: Electromagnetic phenomena in a system moving with any velocity smaller than that of light. Proc. Amst. Acad. Sci. 6, 809 (1904). Reprod. in H. A. Lorentz, A. Einstein, H. Minkowski, H. Weyl: The principle of relativity. New York: Dover 1952.Google Scholar
  141. Lorentz, H. A.: The theory of electrons. 1909. Republ. New York: Dover 1952.Google Scholar
  142. Lorenz, L.: Über die Refractionsconstante (On the constant of refraction). Wiedem. Ann. 11, 70 (1881).MATHGoogle Scholar
  143. Lovelace, R. V. E., Salpeter, E. E., Sharp, L. E., Harris, D. E.: Analysis of observations of interplanetary scintillations. Ap. J. 159, 1047 (1971).ADSGoogle Scholar
  144. Margenau, H.: Conduction and dispersion of ionized gases at high frequencies. Phys. Rev. 69, 508(1946).ADSGoogle Scholar
  145. Maxwell, J. C.: Illustrations of the dynamical theory of gases: Part I. On the motions and collisions of perfectly elastic spheres. Phil. Mag. 19, 19 (1860). Part. II. On the process of diffusion of two or more kinds of moving particles among one another. Phil. Mag. 20, 21 (1860).Google Scholar
  146. Maxwell, J. C.: On physical lines of force: Part. I. The theory of molecular vortices applied to magnetic phenomena; Part II. The theory of molecular vortices applied to electric currents. Phil. Mag. 21, 161, 281 (1861).Google Scholar
  147. Maxwell, J. C.: The theory of anomalous dispersion. Phil. Mag. 48, 151 (1899).Google Scholar
  148. Maxwell, J. C.: A treatise on electricity and magnetism. 1873. Republ. New York: Dover 1954.Google Scholar
  149. Mayer, C. H.: Thermal radio emission of the planets and moon. In: Surfaces and interiors of planets and satellites (ed. A. Dollfuss). New York: Academic Press 1970.Google Scholar
  150. Mayer, C. H., McCullough, T. P.: Microwave radiation of Uranus and Neptune. Icarus 14, 187 (1971).ADSGoogle Scholar
  151. McCray, R.: Synchrotron radiation losses in self-absorbed radio sources. Ap. J. 156, 329 (1969).ADSGoogle Scholar
  152. Melrose, D. B.: On the degree of circular polarization of synchrotron radiation. Astrophys. and Space Sci. 12, 172 (1971).ADSGoogle Scholar
  153. Menzel, D. H., Pekeris, C. L.: Absorption coefficients and hydrogen line intensities. M.N. R. A.S. 96, 77 (1935). Reproduced in: Selected papers on physical processes in ionized plasmas (ed. D. H. Menzel). New York: Dover 1962.ADSMATHGoogle Scholar
  154. Mercier, R. P.: Diffraction by a screen causing large random phase fluctuations. Proc. Camb. Phil. Soc. 58, 382 (1962).ADSMATHGoogle Scholar
  155. Mercier, R. P.: The radio-frequency emission coefficient of a hot plasma. Proc. Phys. Soc. 83, 819 (1964).MathSciNetADSGoogle Scholar
  156. Mezger, P. G., Henderson, A. P.: Galactic H II regions I. Observations of their continuum radiation at the frequency 5 GHz. Ap. J. 147, 471 (1967).ADSGoogle Scholar
  157. Mie, G. von: Beiträge zur Optik trüber Medien, speziell Kolloidaler Metallösungen (Contributions to the optics of opaque media, especially colloide metal solutions). Ann. Physik 25, 377 (1908).ADSMATHGoogle Scholar
  158. Milne, E. A.: Radiative equilibrium in the outer layers of a star: the temperature distribution and the law of darkening. M.N.R. A.S. 81, 361 (1921).ADSGoogle Scholar
  159. Milne, E. A.: Thermodynamics of the stars. Handbuch der Astrophysik 3, 80 (1930). Reproduced in: Selected papers on the transfer of radiation (ed. D. H. Menzel). New York: Dover 1966.Google Scholar
  160. Morrison, D.: Thermophysics of the planet Mercury. Space Sci. Rev. 11, 271 (1970).ADSGoogle Scholar
  161. Mosengeil, K.: Theorie der stationären Strahlung in einem gleichförmig bewegten Hohlraum (Theory of stationary radiation in a uniformly moving cavity). Ann. Phys. 22, 867 (1907).MATHGoogle Scholar
  162. Mott, N. F., Massey, H. S. W.: The theory of atomic collisions. Oxford: Oxford at the Clarendon Press 1965.Google Scholar
  163. Muhleman, D. O.: Microwave opacity of the Venus atmosphere. Astron. J. 74, 57 (1969).ADSGoogle Scholar
  164. O’Dell, S. L., Sartori, L.: Limitation on synchrotron models with small pitch angles. Ap. J. 161, L 63 (1970).Google Scholar
  165. Ohm, G. S.: Versuch einer Theorie der durch galvanische Kräfte hervorgebrachten elektroskopischen Erscheinungen (An attempt to a theory of the galvanic forces generated through electroscopic phenomena). Ann. Phys. 6, 459; 7, 45 (1826).Google Scholar
  166. Oort, J. H., Walraven, T.: Polarization and composition of the Crab nebula. B.A.N. 12, 285 (1956).ADSGoogle Scholar
  167. Oster, L.: Effects of collisions on the cyclotron radiation from relativistic particles. Phys. Rev. 119, 1444 (1960).ADSGoogle Scholar
  168. Oster, L.: Emission, absorption, and conductivity of a fully-ionized gas at radio frequencies. Rev. Mod. Phys. 33 (4), 525 (1961).MathSciNetADSMATHGoogle Scholar
  169. Oster, L.: The free-free emission and absorption coefficients in the radio frequency range at very low temperatures. Astron. Astrophys. 9, 318 (1970).ADSGoogle Scholar
  170. Planck, M.: Über das Gesetz der Energieverteilung im Normalspectrum (On the theory of thermal radiation). Ann. Physik 4, 553 (1901).ADSMATHGoogle Scholar
  171. Planck, M.: The theory of heat radiation. 1913. Reprod. New York: Dover 1959.Google Scholar
  172. Poincaré, H.: Électricité—sur la dynamique de lélectron. Comptes Rendus Acad. Sci. Paris 140, 1504(1905).MATHGoogle Scholar
  173. Poisson, S. D.: Remarques sur une équation qui se présente dans la théorie des attractions des spéroides. Bull. de la Soc. Philomathique 3, 388 (1813).Google Scholar
  174. Pollack, J. B., Morrison, D.: Venus: Determination of atmospheric parameters from the microwave spectrum. Icarus 12, 376 (1970).ADSGoogle Scholar
  175. Poynting, J. H.: On the transfer of energy in the electromagnetic field. Phil. Trans. 175, 343 (1884).MATHGoogle Scholar
  176. Rabi, I. I. von: Das freie Elektron im homogenen Magnetfeld nach der Diracschen Theorie (The free electron in a homogeneous magnetic field according to the Dirac theory). Z. Physik 49, 507 (1928).ADSMATHGoogle Scholar
  177. Ramaty, R.: Gyrosynchrotron emission and absorption in a magnetoactive plasma. Ap. J. 158, 753 (1969).ADSGoogle Scholar
  178. Ratcliffe, J. A.: The magneto-ionic theory and its applications to the ionosphere. Cambridge: Cambridge Univ. Press 1959.MATHGoogle Scholar
  179. Rayleigh, Lord: On the light from the sky, its polarization and colour. Phil. Mag. 41, 107, 274(1871).Google Scholar
  180. Rayleigh, Lord: Investigations in optics, with special reference to the spectroscope. Phil. Mag. 8, 403 (1879).Google Scholar
  181. Rayleigh, Lord: On the transmission of light through an atmosphere containing small particles in suspension, and on the origin of the blue of the sky. Phil. Mag. 47, 375 (1899).MATHGoogle Scholar
  182. Rayleigh, Lord: Remarks upon the law of complete radiation. Phil. Mag. 49, 539 (1900).MATHGoogle Scholar
  183. Rayleigh, Lord: The dynamical theory of gases and of radiation. Nature, 72, 54 (1905).ADSGoogle Scholar
  184. Razin, V. A.: The spectrum of nonthermal cosmic radio emission. Radiophysica 3, 584, 921 (1960).Google Scholar
  185. Rees, M. J.: Appearance of relativistically expanding radio sources. Nature 211, 468 (1966).ADSGoogle Scholar
  186. Rickett, B. J.: Interstellar scintillation and pulsar intensity variations. M.N.R. A.S. 150, 67 (1970).ADSGoogle Scholar
  187. Russell, H. N.: On the albedo of the planets and their satellites. Ap. J. 43, 173 (1916).ADSGoogle Scholar
  188. Rutherford, E.: The scattering of α and β particles by matter and the structure of the atom. Phil. Mag. 21, 669 (1911).MATHGoogle Scholar
  189. Salpeter, E. E.: Electron density fluctuations in a plasma. Phys. Rev. 120, 1528 (1960).MathSciNetADSGoogle Scholar
  190. Salpeter, E. E.: Interplanetary scintillations L Theory. Ap. J. 147, 433 (1967).ADSGoogle Scholar
  191. Sauter, F. von: Zur unrelativistischen Theorie des kontinuierlichen Röntgenspektrums (On the non-relativistic theory of the continuous X-ray spectrum). Ann. Physik 18, 486 (1933).ADSGoogle Scholar
  192. Scheuer, P. A. G.: The absorption coefficient of a plasma at radio frequencies. M.N.R. A.S. 120, 231 (1960).MathSciNetADSGoogle Scholar
  193. Scheuer, P.A.G.: Synchrotron radiation formulae. Ap. J. 151, L 139 (1968).ADSGoogle Scholar
  194. Schott, G. A.: Electromagnetic radiation: Cambridge: Cambridge University Press 1912.MATHGoogle Scholar
  195. Schwinger, J.: On the classical radiation of accelerated electrons. Phys. Rev. 75, 1912 (1949).MathSciNetADSMATHGoogle Scholar
  196. Shapiro, I. I.: Theory of the radar determination of planetary rotations. Astron. J. 72, 1309 (1967).ADSGoogle Scholar
  197. Shklovski, I. S.: On the nature of the radiation from the Crab nebula. Dokl. Akad. Nauk. S. S. S. R. 90, 983 (1953).Google Scholar
  198. Simon, M.: Asymptotic form for synchrotron spectra below Razin cutoff. Ap. J. 156, 341 (1969).ADSGoogle Scholar
  199. Sitenko, A. G., Stepanov, K. N.: On the oscillations of an electron plasma in a magnetic field. Sov. Phys. J. E. T. P. 4, 512(1957).MathSciNetMATHGoogle Scholar
  200. Slish, V. I.: Angular size of radio stars. Nature 199, 682 (1963).ADSGoogle Scholar
  201. Smerd, S. F., Westfold, K. C.: The characteristics of radio-frequency radiation in an ionized gas, with applications to the transfer of radiation in the solar atmosphere. Phil. Mag. 40, 831 (1949).Google Scholar
  202. Smerd, S. F., Wild, J. P., Sheridan, K. V.: On the relative position and origin of harmonics in the spectra of solar radio bursts of spectral types II and III. Austr. J. Phys. 15, 180 (1962).ADSGoogle Scholar
  203. Snell, W.: 1621, unpubl.Google Scholar
  204. Sommerfeld, A.: Über die Beugung und Bremsung der Elektronen (On the deflection and deceleration of electrons). Ann. Phys. 11, 257 (1931).Google Scholar
  205. Stefan, A. J.: Beziehung zwischen Wärmestrahlung und Temperatur (Relation between thermal radiation and temperature). Wien. Ber. 79, 397 (1879).Google Scholar
  206. Stokes, G. G.: On the composition and resolution of streams of polarized light from different sources. Trans. Camb. Phil. Soc. 9, 399 (1852).ADSGoogle Scholar
  207. Takakura, T.: Synchrotron radiation from intermediate energy electrons and solar radio outbursts at microwave frequencies. Publ. Astron. Soc. Japan 12, 325, 352 (1960).ADSGoogle Scholar
  208. Terzian, Y., Parrish, A.: Observations of the Orion nebula at low radio frequencies. Astrophys. Lett. 5, 261 (1970).ADSGoogle Scholar
  209. Thomson, J. J.: Conduction of electricity through gases. Cambridge: Cambridge University Press 1903. Republ. New York: Dover 1969.Google Scholar
  210. Tonks, L., Langmuir, I.: Oscillations in ionized gases. Phys. Rev. 33, 195 (1929).ADSMATHGoogle Scholar
  211. Troitskii, V. S.: On the possibility of determining the nature of the surface material of Mars from its radio emission. Radio Science 5 (2), 481 (1970).ADSGoogle Scholar
  212. Trubnikov, B. A.: Plasma radiation in a magnetic field. Sov. Phys. “Doklady” 3, 136 (1958).ADSMATHGoogle Scholar
  213. Trubnikov, B. A.: Particle interactions in a fully ionized plasma. Rev. Plasma Phys. 1, 105 (1965).ADSGoogle Scholar
  214. Trumpler, R. J.: Absorption of light in the galactic system. P. A.S. P. 42, 214 (1930).ADSGoogle Scholar
  215. Tsytovich, V. N.: The problem of radiation by fast electrons in a magnetic field in the presence of a medium. Vestn. Mosk. Univ. 11, 27 (1951).Google Scholar
  216. Twiss, R. Q.: On the nature of discrete radio sources. Phil. Mag. 45, 249 (1954).Google Scholar
  217. Vladimirski, V. V.: Influence of the terrestial magnetic field on large Auger showers. Zh. Exp. Teor. Fiz. 18, 392 (1948).Google Scholar
  218. Vlasov, A. A.: On the kinetic theory of an assembly of particles with collective interaction. J. Phys. (U.S.S.R.) 9, 25(1945).MathSciNetMATHGoogle Scholar
  219. Westfold, K. C.: The polarization of synchrotron radiation. Ap. J. 130, 241 (1959).MathSciNetADSGoogle Scholar
  220. Wheeler, J. A., Lamb, W. E.: Influence of atomic electrons on radiation and pair production. Phys. Rev. 55, 858 (1939).ADSMATHGoogle Scholar
  221. Whitford, A. E.: The law of interstellar reddening. Astron. J. 63, 201 (1958).ADSGoogle Scholar
  222. Wiechert, J. E.: Elektrodynam. Elementargesetze (Fundamental electrodynamic laws). Arch. Néerl 5, 1 (1901).Google Scholar
  223. Wien, W.: Eine neue Beziehung der Strahlung schwarzer Körper zum zweiten Hauptsatz der Wärmetheorie (One new relation between the radiation of blackbodies and the second law of thermodynamics). Sitz. Acad. Wiss. Berlin 1, 55 (1893).Google Scholar
  224. Wien, W.: On the division of energy in the emission-spectrum of a black body. Phil. Mag. 43, 214 (1894).Google Scholar
  225. Wild, J. P., Hill, E. R.: Approximation of the general formulae for gyro and synchrotron radiation in a vacuum and isotropic plasma. Austr. J. Phys. 24, 43 (1971).ADSGoogle Scholar
  226. Wild, J. P., Smerd, S. F., Weiss, A. A.: Solar bursts. Ann. Rev. Astron. Astrophys. 1, 291 (1963).ADSGoogle Scholar
  227. Williams, P. J. S.: Absorption in radio sources of high brightness temperature. Nature 200, 56 (1963).ADSGoogle Scholar
  228. Zheleznyakov, V. V.: Radio emission of the sun and planets. New York: Pergamon Press 1970.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1974

Authors and Affiliations

  • Kenneth R. Lang
    • 1
  1. 1.Tufts UniversityMedfordUSA

Personalised recommendations