Advertisement

Myokardfibrose: Die Rolle von Angiotensin II und Aldosteron

  • Karl T. Weber
  • C. G. Brilla
  • S. E. Campbell
  • E. Guarda
  • G. Zhou
  • K. Sriram

Zusammenfassung

In diesem Bericht geben wir einen Überblick über die Ersatz- (d. h. Bildung von Narbengewebe) und die reaktiven fibrösen Gewebsveränderungen (d. h. perivaskuläre und interstitielle Fibrose), die man im Myokard als Reaktion auf Effektorhormone des Renin-Angiotensin-Aldosteron-Systems findet. Es werden experimentelle Daten vorgestellt um zu zeigen, daß a) endogene oder exogene Erhöhungen von Angiotensin II im Plasma mit einer akuten Nekrose kardialer Myozyten einhergehen und daß es daraufhin zu einer mikroskopisch nachweisbaren Narbenbildung kommt; b) chronische Erhöhungen des Aldosterons (ALDO) im Plasma, die mit der Na+-Zufuhr zusammenhängen, mit einer perivaskulären und interstitiellen Fibrose des koronaren und des systematischen Kreislaufs einhergehen, und daß man diese Erhöhungen auch als Reaktion auf eine chronische Verabreichung des Mineralcorticoidhormons Deoxycorticosteron (DOC) beobachten kann; und c) ein chronischer Mineralcorticoidüberschuß aufgrund von ALDO oder DOC mit einer vermehrten K+-Ausscheidung im Urin zusammenhängt, mit einer Nekrose kardialer Myozyten und mit einer Narbenbildung. Pharmakologische Substanzen, die mit diesen Effektorhormonen interferieren (d. h. ACE-Inhibition und ALDO-Rezeptor-Antagonismus) schützen das Myokard vor diesem pathologischen strukturellen Umbau, der von der reaktiven und Ersatz- (reparativen) Fibrose hervorgerufen wird. Es werden auch Anhaltspunkte vorgestellt, die darauf hinweisen, daß eine chronische ACE-Inhibition mit einer Regression der reaktiven Myokardfibrose einhergeht. Aufgrund dieser experimentellen Befunde möchten wir vorschlagen, daß klinische Untersuchungen angezeigt sind, die die Prävention und Regression der Myokardfibrose zum Gegenstand haben — eine wichtige Determinante des pathologischen strukturellen Umbaus und der abnormen Myokardstarre.

Schlüsselwörter

Hypertrophie des linken Ventrikels Kollagen Angiotensin II Aldosteron Mineralcorticoide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Alderman MH, Madhaven S, Ooi WL, Cohen H, Sealey JE, Laragh JH (1991) Association of the renin-sodium profile with the risk of myocardial infarction in patients with hypertension. N Engl J Med 324: 1098–1104PubMedCrossRefGoogle Scholar
  2. 2.
    Anderson KR, St. John Sutton MG, Lie JT (1979) Histopathological types of cardiac fibrosis in myocardial disease. J Pathol 128: 79–85Google Scholar
  3. 3.
    Bhan RD, Giacomelli F, Wiener J (1978) Ultrastructure of coronary arteries and myocardium in experimental hypertension. Exp Mol Pathol 29: 66–81PubMedCrossRefGoogle Scholar
  4. 4.
    Bhan RD, Giacomelli F, Wiener J (1982) Adrenoreceptor blockade in angiotensin-induced hypertension: effect on rat coronary arteries and myocardium. Am J Pathol 108: 60–71PubMedGoogle Scholar
  5. 5.
    Brilla CG, Weber KT (1992) Mineralocorticoid excess, dietary sodium and myocardial fibrosis. J Lab Clin Med (In press)Google Scholar
  6. 6.
    Brilla CG, Janicki JS, Weber KT (1991) Cardioreparative effects of lisinopril in rats with genetic hypertension and left ventricular hypertrophy. Circulation 83: 1771–1779PubMedCrossRefGoogle Scholar
  7. 7.
    Brilla CG, Janicki JS, Weber KT (1991) Impaired diastolic function and coronary reserve in genetic hypertension: role of interstitial fibrosis and medial thickening of intramyocardial coronary arteries. Circ Res 69: 107–115PubMedCrossRefGoogle Scholar
  8. 8.
    Brilla CG, Pick R, Tan LB, Janicki JS, Weber KT (1990) Remodeling of the rat right and left ventricle in experimental hypertension. Circ Res 67: 1355–1364PubMedCrossRefGoogle Scholar
  9. 9.
    Brilla CG, Weber KT (1991) Prevention of myocardial fibrosis in renovascular hypertension and hyperaldosteronism: anti-fibrotic effects of spironolactone [Abstract]. In: 17th International Aldosterone Conference. Meetings Events Communications, Evansville, Ind, pp 56–57Google Scholar
  10. 10.
    Brilla CG, Weber KT (1992) Reactive and reparative myocardial fibrosis in arterial hypertension in the rat. Cardiovasc Res 26: 671–677PubMedCrossRefGoogle Scholar
  11. 11.
    Brilla CG, Zhou G, Weber KT (1992) Aldosterone and collagen synthesis in cultured adult rat cardiac fibroblasts [Abstract]. FASEB J 6: A1914Google Scholar
  12. 12.
    Brown KD, Littlewood CJ (1989) Endothelin stimulates DNA synthesis in Swiss 3T3 cells. Biochem J 263: 977–980PubMedGoogle Scholar
  13. 13.
    Brunner HR, Laragh JH, Baer L, Newton MA, Goodwin FT, Krakoff LR, Bard RH, Bühler FR (1972) Essential hypertension: renin and aldosterone, heart attack and stroke. N Engl J Med 286: 441–449PubMedCrossRefGoogle Scholar
  14. 14.
    Campbell DJ, Habener JF (1987) Cellular localization of angiotensinogen gene expression in brown adipose tissue and mesentery: quantification of messenger ribonucleic acid abundance using hybridization in situ. Endocrinology 121: 1616–1626PubMedCrossRefGoogle Scholar
  15. 15.
    Campbell SE, Diaz-Arias AA, Weber KT (1992) Fibrosis of the human heart and systemic organs in adrenal adenoma. Blood Pressure (In press)Google Scholar
  16. 16.
    Campbell SE, Janicki JS, Weber KT (1992) Prevention of microscopic scarring in the myocardium of rats with hyperaldosteronism [Abstract]. FASEB J 6: A1874Google Scholar
  17. 17.
    Campbell SE, Matsubara BB, Janicki JS, Weber KT (1991) Myocardial fibroblast response in renovascular hypertension: temporal and distribution patterns [Abstract]. Clin Res 39: 691AGoogle Scholar
  18. 18.
    Casale PN, Devereux RB, Milner M, Zullo G, Harshfield GA, Pickering TG, Laragh JH (1986) Value of echocardiographic measurement of left ventricular mass in predicting cardiovascular morbid events in hypertensive men. Ann Intern Med 105: 173–178PubMedGoogle Scholar
  19. 19.
    Chapman D, Weber KT, Eghbali M (1990) Regulation of fibrillar collagen types I and III and basement membrane type IV collagen gene expression in pressure overloaded rat myocardium. Circ Res 67: 787–794PubMedCrossRefGoogle Scholar
  20. 20.
    Cooper RS,Simmons BE, Castaner A, Santhanam V, Ghali J, Mar M (1990) Left ventricular hypertrophy is associated with worse survival independent of ventricular function and number of coronary arteries severely narrowed. Am J Cardiol 65: 441–445CrossRefGoogle Scholar
  21. 21.
    Crane WAJ, Dutta LP (1963) The utilisation of tritiated thymidine for deoxyribonucleic acid synthesis by the lesions of experimental hypertension in rats. J Path Bact 86: 83–97PubMedCrossRefGoogle Scholar
  22. 22.
    Darrow DC, Miller HC (1942) The production of cardiac lesions by repeated injections of desoxycorticosterone acetate. J Clin Invest 21: 601–611PubMedCrossRefGoogle Scholar
  23. 23.
    Davidson JS, Baumgarten IM (1988) Glycyrrhetinic acid derivatives: a novel class of inhibitors of gap junctional intercellular communication. Structure-activity relationship. J Pharmacol Exp Ther 245: 1104–1107Google Scholar
  24. 24.
    Davis BA, Crook JE, Vestal RE, Oates JA (1979) Prevalence of renovascular hypertension in patients with grade III or IV hypertensive retinopathy. N Engl J Med 301: 1273–1276PubMedCrossRefGoogle Scholar
  25. 25.
    Davis JPL, Chipperfield AR, Harper AA (1991) Comparison of the electrical properties of arterial smooth muscle in normotensive rats and rats with deoxycorticosterone acetatesalt-induced hypertension: possible involvement of (Na+-K+-C1—) co-transport. Clin Sci 81: 73 78Google Scholar
  26. 26.
    Dunn MJ, Tannen RL (1974) Low-renin hypertension. Kidney Int 5: 317–325PubMedCrossRefGoogle Scholar
  27. 27.
    Friedman SM, Tanaka M (1987) Increased sodium permeability and transport as primary events in the hypertensive response to deoxycorticosterone acetate ( DOCA) in the rat. J Hypertens 5: 341–345Google Scholar
  28. 28.
    Funder JW, Pearce PT, Smith R, Smith AI (1988) Mineralocorticoid action: target tissue specificity is enzyme, not receptor, mediated. Science 242: 583–585PubMedCrossRefGoogle Scholar
  29. 29.
    Gabbiani G (1981) The myofibroblast: a key cell for wound healing and fibrocontractive diseases. In: Deyl Z, Adam M (eds) Connective Tissue Research: Chemistry, Biology, and Physiology. Liss, New york, pp 183–194Google Scholar
  30. 30.
    Ganten D, Schelling P, Flugel RM, Ganten U (1975) Effect of angiotensin and an angiotensin antagonist on iso-renin and cell growth in 3T3 mouse cells. 1RCS J Med Sci 3: 327–332Google Scholar
  31. 31.
    Garwitz ET, Jones AW (1982) Aldosterone infusion into the rat and dose-dependent changes in blood pressure and arterial ionic transport. Hypertension 4: 374–381PubMedCrossRefGoogle Scholar
  32. 32.
    Giacomelli F, Anversa P, Wiener J (1976) Effect of angiotensin-induced hypertension on rat coronary arteries and myocardium. Am J Pathol 84: 111–125PubMedGoogle Scholar
  33. 33.
    Giese J (1964) Acute hypertensive vascular disease. 2. Studies on vascular reaction patterns and permeability changes by means of vital microscopy and colloidal tracer technique. Acta Pathol Microbiol Scand 62: 497–515PubMedGoogle Scholar
  34. 34.
    Guarda E, Myers P, Zhou G, Brilla C, Weber K (1992) Endothelin-1 elicits aldosterone ( ALDO) release from cultured endothelial cells [Abstract]. FASEB J 6: A1811Google Scholar
  35. 35.
    Hall CE, Hall 0 (1965) Hypertension and hypersalimentation. I. Aldosterone hypertension. Lab Invest 14: 285–294Google Scholar
  36. 36.
    Herrera VLM, Chobanian AV, Ruiz-Opazo N (1988) Isoform-specific modulation of Nat, K+-ATPase a-subunit gene expression in hypertension. Science 241: 221–233Google Scholar
  37. 37.
    Herron GS, Werb Z, Dwyer K, Banda MJ (1986) Secretion of metalloproteinases by stimulated capillary endothelial cells. J Biol Chem. 261: 2810–2813PubMedGoogle Scholar
  38. 38.
    Huysman JAN, Vliegen HW, VanderLaarse A, Euldering F (1989) Changes in nonmyocyte tissue composition associated with pressure overload of hypertrophie human hearts. Pathol Res Pract 184: 577–581PubMedCrossRefGoogle Scholar
  39. 39.
    Jalil JE, Janicki JS, Pick R, Weber KT (1991) Coronary vascular remodeling and myocardial fibrosis in the rat with renovascular hypertension: response to captopril. Am J Hypertens 4: 51–55PubMedGoogle Scholar
  40. 40.
    Johnston CI, Mooser V, Sun Y, Fabris B (1991) Changes in cardiac angiotensin converting enzyme ( ACE) after myocardial infarction and hypertrophy in rats. Clin Exp Pharmacol Physiol 18: 107–110Google Scholar
  41. 41.
    Jones AW, Hart RG (1975) Altered ion transport in aortic smooth muscle during deoxycorticosterone acetate hypertension in the rat. Cire Res 37: 333–341CrossRefGoogle Scholar
  42. 42.
    Jwatsuki K, Cardinale GJ, Spector S, Udenfriend S (1977) Hypertension: increase of collagen biosynthesis in arteries but not veins. Science 198: 403–405CrossRefGoogle Scholar
  43. 43.
    Karsner HT (1955) Human Pathology. JB Lippincott, PhiladelphiaGoogle Scholar
  44. 44.
    Koren MJ, Devereux RB, Casale PN, Savage DD, Laragh JH (1990) Relation of left ventricular mass and geometry to morbidity and mortality in uncomplicated essential hypertension. Ann Intern Med 115: 345–352Google Scholar
  45. 45.
    Kornel L, Kanamarlapudi N, Ramsay C, Travers T, Kamath S, Taff DJ, Patel N, Packer W, Raynor WJ (1983) Arterial steroid receptors and their putative role in the mechanism of hypertension. J Steroid Biochem 19: 333–344PubMedCrossRefGoogle Scholar
  46. 46.
    Kusuhara M, Yamaguchi K, Ohnishi A, Abe K, Kimura S, Oono H, Hori S, Nakamura Y (1989) Endothelin potentiates growth factor-stimulated DNA synthesis in Swill 3T3 cells. Jpn J Cancer Res 80: 302–305PubMedCrossRefGoogle Scholar
  47. 47.
    Laine GA (1988) Microvascular changes in the heart during chronic arterial hypertension. Cire Res 62: 953–960CrossRefGoogle Scholar
  48. 48.
    Leipälä JA, Takala TES, Ruskoaho H, Myllylä R, Kainulainen H, Hassinen 1E, Anttinen H, Vihko V (1988) Transmural distribution of biochemical markers of total protein and collagen synthesis, myocardial contraction speed and capillary density in the rat left ventricle in angiotensin II-induced hypertension. Acta Physiol Scand 133: 325–333Google Scholar
  49. 49.
    Levy D, Garrison RI, Savage DD, Kannel WB, Castelli WP (1990) Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med 322: 1561–1566PubMedCrossRefGoogle Scholar
  50. 50.
    Lindy S, Turto H, Uitto J (1972) Protocollagen proline hydroxylase activity in rat heart during experimental cardiac hypertrophy. Circ Res 30: 205–209PubMedCrossRefGoogle Scholar
  51. 51.
    Meyer WJ III, Nichols NR (1981) Mineralocorticoid binding in cultured smooth muscle cells and fibroblasts from rat aorta. J Steroid Biochem 14: 1157–1168Google Scholar
  52. 52.
    Miller FN, Sims DE (1986) Contractile elements in the regulation of macromolecular permeability. Fed Proc 45: 84–88PubMedGoogle Scholar
  53. 53.
    Moore RD, Schienberg MD, Koletsky S (1963) Cardiac lesions in experimental hypertension. Arch Pathol 75: 28–44PubMedGoogle Scholar
  54. 54.
    Morkin E, Ashford TP (1968) Myocardial DNA synthesis in experimental cardiac hypertrophy. Am J Physiol 215: 1409–1413PubMedGoogle Scholar
  55. 55.
    Ohta K, Hirata Y, Imai T, Kanno K, Emori T, Shichiri M, Marumo F (1990) Cytokine-induced release of endothelin-1 from porcine renal epithelial cell line. Biochem Biophys Res Commun 169: 578–584PubMedCrossRefGoogle Scholar
  56. 56.
    Ooshima A, Fuller GC, Cardinale GJ, Spector S, Udenfried S (1974) Increased collagen synthesis in blood vessels of hypertensive rats and its reversal by antihypertensive agents. Proc Natl Acad Sci USA 71: 3019–3023PubMedCrossRefGoogle Scholar
  57. 57.
    Pearlman ES, Weber KT, Janicki JS, Pietra G, Fishman AP (1982) Muscle fiber orientation and connective tissue content in the hypertrophied human heart. Lab Invest 46: 158–164PubMedGoogle Scholar
  58. 58.
    Reddy HK, Campbell SE, Janicki JS, Zhou G, Weber KT (1992) Coronary microvascular fluid flux and permeability: influence of angiotensin II, aldosterone and acute arterial hypertension. J Lab Clin Med (In press)Google Scholar
  59. 59.
    Resink TJ, Hahn AWA, Scott-Burden T, Powell J, Weber E, Bühler FR (1990) Inducible endothelin mRNA expression and peptide secretion in cultured human vascular smooth muscle cells. Biochem Biophys Res Commun 168: 1303–1310PubMedCrossRefGoogle Scholar
  60. 60.
    Sano H, Okada H, Kawaguchi H, Yasuda H (1991) Increased angiotensin II-stimulated collagen synthesis in cultured cardiac fibroblasts from spontaneously hypertensive rats [Abstract]. Circulation 84 (Suppl. II): II - 48Google Scholar
  61. 61.
    Sarzani R, Brecher P, Chobanian AV (1989) Growth factor expression in aorta of normotensive and hypertensive rats. J Clin Invest 83: 1404–1408PubMedCrossRefGoogle Scholar
  62. 62.
    Schrey MP, Patel KV, Tezapsidis N (1992) Bombesin and glucocorticoids stimulate human breast cancer cells to produce endothelin, a paracrine mitogen for breast stromal cells. Cancer Res 52: 1786–1790PubMedGoogle Scholar
  63. 63.
    Selye H (1946) The general adaptation syndrome and the disease of adaptation. J Clin Endocrinol 6: 117–230CrossRefGoogle Scholar
  64. 64.
    Silver MA, Pick R, Brilla CG, Jalil JE, Janicki JS, Weber KT (1990) Reactive and reparative fibrosis in the hypertrophied rat left ventricle: two experimental models of myocardial fibrosis. Cardiovasc Res 24: 741–747PubMedCrossRefGoogle Scholar
  65. 65.
    Tan LB, Jalil JE, Pick R, Janicki JS, Weber KT (1991) Cardiac myocyte necrosis induced by angiotensin II. Circ Res 69: 1185–1195PubMedCrossRefGoogle Scholar
  66. 66.
    Turto H (1977) Collagen metabolism in experimental cardiac hypertrophy in the rat and effect of digitoxin treatment. Cardiovasc Res 11: 358–366PubMedCrossRefGoogle Scholar
  67. 67.
    Weber KT (1989) Cardiac interstitium in health and disease: the fibrillar collagen network. J Am Coll Cardiol 13: 1637–1652PubMedCrossRefGoogle Scholar
  68. 68.
    Weber KT, Brilla CG (1991) Pathological hypertrophy and cardiac interstitium: fibrosis and renin-angiotensin-aldosterone system. Circulation 83: 1849–1865PubMedCrossRefGoogle Scholar
  69. 69.
    Weber KT, Brilla CG, Janicki JS (1990) Structural remodeling of myocardial collagen in systemic hypertension: functional consequences and potential therapy. Heart Failure 6: 129–137Google Scholar
  70. 70.
    Weber KT, Brilla CG, Janicki JS (1991) Cell biology of myocardial remodeling: contribution of nonmyocyte cells. J Vase Med Biol 3: 44–49Google Scholar
  71. 71.
    Weber KT, Janicki JS, Shroff SG, Pick R, Abrahams C, Chen RM, Bashey RI (1988) Collagen compartment remodeling in the pressure overloaded left ventricle. J Appl Cardiol 3: 37–46Google Scholar
  72. 72.
    Wiener J, Giacomelli F (1973) The cellular pathology of experimental hypertension. VII. Structure and permeability of the mesenteric vasculature in angiotensin-induced hypertension. Am J Pathol 72: 221–240Google Scholar
  73. 73.
    Yamada H, Fabris B, Allen AM, Jackson B, Johnston CI, Mendelsohn FAO (1991) Localization of angiotensin converting enzyme in the rat heart. Circ Res 68: 141–149PubMedCrossRefGoogle Scholar
  74. 74.
    Zhou G, Brilla CG, Weber KT (1992) Angiotensin II-mediated stimulation of collagen synthesis in cultured cardiac fibroblasts [Abstract]. FASEB J 6: A1914Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Karl T. Weber
    • 1
  • C. G. Brilla
    • 1
  • S. E. Campbell
    • 1
  • E. Guarda
    • 1
  • G. Zhou
    • 1
  • K. Sriram
    • 1
  1. 1.Division of Cardiology, Department of Internal MedicineUniversity of Missouri-ColumbiaColumbiaUSA

Personalised recommendations