Advertisement

ACE-Hemmer bei koronarer Herzkrankheit

  • Martin Vogt
  • W. Motz
  • B. E. Strauer

Zusammenfassung

Angiotensin-Konversions-Enzym-(ACE)-Hemmer sind in der Behandlung der arteriellen Hypertonie und der Herzinsuffizienz etabliert. Auf Grund potentiell antiischämischer Effekte finden sie zunehmend Anwendung in der Therapie der koronaren Herzkrankheit (KHK). Neben einer Verminderung des myokardialen Sauerstoffbedarfs und einer Reduktion der Angiotensin-vermittelten koronaren Vasokonstriktion könnten auch Interaktionen mit Bradykinin, dem Prostaglandin-System und dem sympathischen Nervensystem sowie eine Modulation der endothelialen Kontrolle des Koronartonus zu den antiischämischen Effekten von ACE-Hemmern beitragen. — Die bisherigen klinischen Ergebnisse über günstige Effekte von ACE-Hemmern bei Patienten mit KHK sind jedoch widersprüchlich. Während ACE-Hemmer bei Hypertonikern mit KHK in der Regel zu einer Abnahme myokardialer Ischämiezeichen führten, zeigten immerhin bis zu 30% der Normotoniker mit KHK eine fehlende Verbesserung oder sogar eine Verschlechterung ihrer pektanginösen Beschwerden. Abnahme des koronaren Perfusionsdrucks und Veränderungen der transmuralen Blutflußverteilung dürften hierfür verantwortlich sein. Bei Patienten mit linksventrikulärer Dysfunktion (SOLVD) oder manifester Herzinsuffizienz (CONSENSUS, SOLVD) konnte gezeigt werden, daß ACE-Hemmer ein Fortschreiten der linksventrikulären Funktionsstörung verhindern und die Mortalität senken. Bei Patienten mit asymptomatischer linksventrikulärer Dysfunktion nach Myokardinfarkt (SAVE) war die Langzeitbehandlung mit Captopril mit einer gesteigerten Überlebensrate und einer verminderten Morbidität und Mortalität auf Grund kardiovaskulärer Ereignisse vergesellschaftet. Aus prognostischen Gründen sollten daher Patienten mit KHK und linksventrikulärer Dysfunktion oder Herzinsuffizienz mit ACE-Hemmern behandelt werden, wenngleich der klinische Einsatz von ACE-Hemmern bei solchen Patienten mit fortbestehender Angina pectoris durch eine Verschlimmerung der Angina pectoris limitiert sein kann, am ehesten bedingt durch kritische Senkung des koronaren Perfusionsdrucks. Schließlich erwiesen sich ACE-Hemmer bei der Prevention einer Restenose nach primär erfolgreicher PTCA als ineffektiv. — Zusammenfassend sollten somit Patienten mit KHK und linksventrikulärer Dysfunktion oder Herzinsuffizienz aus prognostischen Gründen mit ACE-Hemmern behandelt werden. Bei Hypertonikern mit KHK scheinen ACE-Hemmer in der Regel zu einer Abnahme myokardialer Ischämiezeichen zu führen. Bei normotensiven Patienten mit KHK, jedoch ohne linksventrikuläre Funktionsstörung können ACE-Hemmer nicht allgemein empfohlen werden, ehe die Patienten, die von einer ACE-Hemmer-Therapie profitieren, besser definiert werden können.

Schlüsselwörter

ACE-Hemmer akuter Myokardinfarkt arterielle Hypertonie Herzinsuffizienz koronare Herzkrankheit 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Aiken JW, Reit E (1968) Stimulation of the cat stellate ganglion by angiotensin. J Pharmacol Exp Ther 159: 107–114PubMedGoogle Scholar
  2. 2.
    Akhras F, Jackson G (1991) The role of captopril as single therapy in hypertension and angina pectoris. Int J Cardiol 33: 259–266PubMedCrossRefGoogle Scholar
  3. 3.
    Alderman EL, Fisher LD, Litwin P (1983) Results of coronary artery surgery in patients with poor left ventricular function (CLASS). Circulation 68: 785–795PubMedCrossRefGoogle Scholar
  4. 4.
    Auch-Schwelk W, Bossaller C, Claus M, Graf K, Gräfe M, Schüler S, Fleck E (1992) Mechanismus der Bradykinin-vermittelten vasodilatierenden Wirkung von ACEInhibitoren in Koronararterien. Z Kardiol 81 (suppl 1): 112Google Scholar
  5. 5.
    Berdeaux A, Bonhenry C, Giudicelli JF (1987) Effects of four angiotensin I converting enzyme inhibitors on regional myocardial blood flow and ischemic injury during coronary artery occlusion in dogs. Fundam Clin Pharmacol 1: 201–208PubMedCrossRefGoogle Scholar
  6. 6.
    Berger HJ, Zaret BJ, Speroff L (1977) Cardiac prostaglandin release during myocardial ischemia induced by atrial pacing in patients with coronary artery disease. Am J Cardiol 39: 481–486PubMedCrossRefGoogle Scholar
  7. 7.
    Bianchi A, de Schaepdryver AF, de Vleeschhouwer GR, Preziosi P (1960) On the pharmacology of synthetic hypertensine. Arch Int Pharmacodyn Ther 124: 21–44PubMedGoogle Scholar
  8. 8.
    Boadle MC, Hughes J, Roth RH (1969) Angiotensin accelerates catecholamine biosynthesis in sympathetically innervated tissues. Nature 222: 987–988PubMedCrossRefGoogle Scholar
  9. 9.
    Blumberg AL, Ackerly JA, Peach MJ (1976) Differentiation of neurogenic and myocardial angiotensin II receptors in isolated rabbit atria. Circ Res 36: 719–726CrossRefGoogle Scholar
  10. 10.
    Bossaller C, Auch-Schwelk W, Götze S, Weber F, Graf K, Gräfe M, Hehlert-Friedrich C, Fleck E (1992) Die chronische Behandlung mit Enalapril führt zu einer Zunahme der endothelabhängigen Relaxation. Z Kardiol 81 (suppl 1): 29Google Scholar
  11. 11.
    Brivet F, Deltraissy JF, Gindicelly JF, Richer C, Legrand A, Dormont J (1981) Immediate effects of captopril in acute left ventricular failure secondary to myocardial infarction. Eur J Clin Invest 11: 369–374PubMedCrossRefGoogle Scholar
  12. 12.
    Bush LR, Campbell WB, Kern K (1984) The effects of alpha2-adrenergic and serotonergic receptor antagonists on cyclic blood flow alterations in stenosed canine coronary arteries. Circ Res 55: 642–648PubMedCrossRefGoogle Scholar
  13. 13.
    Bussmann WD, Goerke S, Schneider W, Kaltenbach M (1988) Angiotensin-converting-Enzym-Hemmer bei Angina pectoris. Dtsch Med Wochenschr 113: 548–550PubMedCrossRefGoogle Scholar
  14. 14.
    Campbell DJ, Habener JF (1987) Cellular localization of angiotensin gene expression in brown and adipose tissue and mesentery: Quantification of messenger ribonucleic acid abundance using hybridization in situ. Endocrinology 121: 1616–1626PubMedCrossRefGoogle Scholar
  15. 15.
    Chatterjee K, Rouleau J-L, Parmely WW (1982) Haemodynamic and myocardial metabolic effects of captopril in chronic heart failure. Br Heart J 47: 233–238PubMedCrossRefGoogle Scholar
  16. 16.
    Chatterjee K, Opie LH (1987) Angiotensin inhibitors and other vasodilators with special reference to congestive heart failure. Cardiovasc Drugs Ther 1: 1–8PubMedCrossRefGoogle Scholar
  17. 17.
    Chu A, Morris K, Kuehl WD (1989) Effects of atrial natriuretic peptide on the coronary arterial vasculature in humans. Circulation 80: 1627–1632PubMedCrossRefGoogle Scholar
  18. 18.
    Cleland JGF, Dargie HJ, Hodsman GP (1984) Captopril in heart failure. A double blind controlled trial. Br Heart J 52: 530–535PubMedCrossRefGoogle Scholar
  19. 19.
    Cleland JGF, Dargie HJ, Ball SG (1985) Effects of enalapril in heart failure: a double-blind study of effects on exercise performance, renal function, hormones and metabolic state. Br Heart J 54: 305–312PubMedCrossRefGoogle Scholar
  20. 20.
    Cleland JG, Henderson E, McLenachan J, Findlay TN, Dargie HJ (1991) Effect of captopril, an angiotensin-converting enzyme inhibitor, in patients with angina pectoris and heart failure. J Am Coll Cardiol 17: 733–739PubMedCrossRefGoogle Scholar
  21. 21.
    Clough DP, Mulroy SC, Angell D, Hatton R (1983) Inference by inhibitors of the reninangiotensin system with neurogenic vasoconstriction. Clin Exp Hypertens 5: 1287–1291CrossRefGoogle Scholar
  22. 22.
    Cohen MV, Kirk ES (1973) Differential response of large and small coronary arteries to nitroglycerin and angiotensin. Circ Res 33: 445–453PubMedCrossRefGoogle Scholar
  23. 23.
    Cohn JN (1991) A comparison of enalapril with hydralazine-isosorbide dinitrate in the treatment of chronic congestive heart failure. New Engl J Med 325: 303–308PubMedCrossRefGoogle Scholar
  24. 24.
    The CONSENSUS Trial Study Group (1987) Effects of enalapril on mortality in severe congestive heart failure: results of the Cooperative North Scandinavian Enalapril Survival Study (CONSENSUS). New Engl J Med 316: 1429–1435Google Scholar
  25. 25.
    Daly P, Rouleau JL, Cousineau D, Burgess JH (1984) Acute effects of captopril on the coronary circulation of patients with hypertension and angina. Am J Med 31: 111–115CrossRefGoogle Scholar
  26. 26.
    Daly P, Mettauer B, Rouleau JL, Burgess J (1985) Lack of reflex increase in myocardial sympathetic tone after captopril: Potential antianginal effect. Circulation 71: 317–325PubMedCrossRefGoogle Scholar
  27. 27.
    Dargie HJ, McAlpine HM, Morton JJ (1987) Neuroendocrine activation in acute myocardial infarction. J Cardiovasc Pharmacol 9 (suppl 2): S21 - S24PubMedCrossRefGoogle Scholar
  28. 28.
    Day MD, Moore AF (1976) Interaction of angiotensin II with noradrenaline and other spasmogens in rabbit isolated aortic strips. Arch Int Pharmacodyn Ther 219: 29–44PubMedGoogle Scholar
  29. 29.
    De Graeff PA, van Guist WH, de Langen CDJ (1986) Concentration-dependent protection by captopril against ischemia-reperfusion injury in the isolated rat heart. Arch Int Pharmacodyn 280: 181–193PubMedGoogle Scholar
  30. 30.
    De Jonge A, Wilffert B, Kalkman HO (1981) Captopril impairs the vascular smooth muscle contraction mediated by postsynaptic alpha2-adrenoceptors in the pithed rat. Eur J Pharmacol 74: 385–386PubMedCrossRefGoogle Scholar
  31. 31.
    De Jonge A, Thoolen MJ, Timmermans PB (1984) Interaction of angiotensin converting enzyme inhibitors with the sympathetic nervous system. Prog Pharmacol 5 /3: 25–38Google Scholar
  32. 32.
    Detre K, Holubkov R, Kelsey S, Cowley M, et al. (1988) Percutaneous transluminal coronary angioplasty in 1985–1986 and 1977–1981: The National Heart, Lung, Blood Institute Registry. N Engl J Med 318: 265–270PubMedCrossRefGoogle Scholar
  33. 33.
    Dinerman JL, Mehta JL (1990) Endothelial, platelet and leukocyte interactions in ischemic heart disease: Insights into potential mechanism and their clinical relevance. J Am Coll Cardiol 16: 207–211PubMedCrossRefGoogle Scholar
  34. 34.
    Drimal J, Boska D (1973) Effects of angiotensin II on myocardial mechanics and contractile state of the heart muscle. Eur J Pharmacol 20: 130–138CrossRefGoogle Scholar
  35. 35.
    Dunn WR, McGrath JC, Wilson VG (1989) Expression of functional postjunctional alpha2-adrenoceptor in rabbit isolated distal saphenous artery-a permissive role for angiotensin II? Br J Pharmacol 96: 259–261PubMedCrossRefGoogle Scholar
  36. 36.
    Dzau VJ (1987) Implications of local angiotensin production in cardiovascular physiology and pharmacology. Am J Cardiol 59: 59A - 65APubMedCrossRefGoogle Scholar
  37. 37.
    Dzau VJ (1988) Circulating versus local-angiotensin system in cardiovascular homeostasis. Circulation 77 (suppl I): 14–113CrossRefGoogle Scholar
  38. 38.
    Dzau VJ (1989) ACE-inhibitors in hypertension: A US perspective. Cardiology 76 (suppl 2): 23–30PubMedCrossRefGoogle Scholar
  39. 39.
    Eaton LW, Weiss JL, Bulkley BH, Garrison JB, Weisfeldt ML (1979) Regional cardiac dilatation after acute myocardial infarction: recognition by two-dimensional echocardiography. N Engl J Med 300: 57–62PubMedCrossRefGoogle Scholar
  40. 40.
    Ertl G, Gerhards W, Wichmann J, Fauth S, Schweisfurth H (1982) Myokardischämie, Plasma-Renin and Converting-Enzym-Aktivität unter Belastung. Z Kardiol 71: 604–611Google Scholar
  41. 41.
    Ertl G, Alexander RW, Kloner RA (1983) Interactions between coronary occlusion and the renin-angiotensin system in the dog. Basic Res Cardiol 78: 518–533PubMedCrossRefGoogle Scholar
  42. 42.
    Ertl G (1987) Coronary vasoconstriction in experimental myocardial ischemia. J Cardiovasc Pharmacol 9 (suppl 2): S9 - S17PubMedCrossRefGoogle Scholar
  43. 43.
    Fingerle J, Au YPT, Clowes AW, Reidy MA (1990) Intimal lesion formation in rat carotid arteries after endothelial denudation in absence of medial injury. Atherosclerosis 10: 1082–1087Google Scholar
  44. 44.
    Fletcher PJ, Pfeffer JM, Pfeffer MA, Braunwald E (1981) Left ventricular diastolic pressure-volume relations in rats with healed myocardial infarction: effects on systolic function. Circ Res 49: 618–626PubMedCrossRefGoogle Scholar
  45. 45.
    Forrester JS, Fishbein M, Helfant R, Fagin J (1991) A paradigm for restenosis based on cell biology: Clues for the development of new preventive therapies. J Am Coll Cardiol 17: 758–769PubMedCrossRefGoogle Scholar
  46. 46.
    Freer RJ, Pappano AJ, Peach MJ, Bing KZ, McLean MJ, Vogel S, Sperelakis N (1976) Mechanism for the positive inotropic effect of angiotensin II on isolated cardiac muscle. Circ Res 39: 178–183PubMedCrossRefGoogle Scholar
  47. 47.
    Freeman AP, Walsh WF, Giles BW (1984) Early and long-term results of coronary artery bypass grafting with severely depressed left ventricular performance. Am J Cardiol 54: 749–754PubMedCrossRefGoogle Scholar
  48. 48.
    Furchgott RF, Vanhoutte PM (1989) Endothelium-derived relaxing and contracting factors. FASEB J 3: 2007–2010PubMedGoogle Scholar
  49. 49.
    Gasic S, Dudzcak R, Korn A (1990) ACE inhibition with cilazapril improves myocardial perfusion to the ischemic regions during exercise: A pilot study. J Cardiovasc Pharmacol 15: 227–232PubMedCrossRefGoogle Scholar
  50. 50.
    Gibbs JSR, Crean PA, Mockus L, Wright C, Sutton GC, Fox KM (1989) The variable effects of angiotensin converting enzyme inhibition on myocardial ischaemia in chronic stable angina. Br Heart J 62: 112–117PubMedCrossRefGoogle Scholar
  51. 51.
    Halperin JL, Faxon DP, Creager MA (1982) Coronary hemodynamic effects of angiotensin inhibition by captopril and teprotide in patients with congestive heart failure. Am J Cardiol 50: 967–972PubMedCrossRefGoogle Scholar
  52. 52.
    Heusch G (1990) Alpha-adrenergic mechanisms in myocardial ischemia. Circulation 81: 1–13PubMedCrossRefGoogle Scholar
  53. 53.
    Hung J, Kelly DT, Baird DK (1980) Aorto-coronary bypass grafting in patients with severe left ventricular dysfunction. J Thorac Cardiovasc Surg 79: 718–723PubMedGoogle Scholar
  54. 54.
    Ignarro LJ (1989) Biological actions and properties of endothelium-derived nitric oxide formed and released from artery and vein. Circ Res 65: 1–21PubMedCrossRefGoogle Scholar
  55. 55.
    Jawien A, Lindner V, Bowen-Pope DF, Schwartz SM, Reidy MA, Clowes AW (1990) Platelet derived groth factor (PDGF) stimulates arterial smooth muscle cell proliferation in vivo. FASEB J 4: 342Google Scholar
  56. 56.
    Jeremy RW, Allmann KC, Bautovitch G, Harris PJ (1989) Patterns of left ventricular dilation during the six months after myocardial infarction. J Am Coll Cardiol 13: 304–310PubMedCrossRefGoogle Scholar
  57. 57.
    Jin M, Wilhelm MJ, Lang RE, Unger T, Lindpaintner K, Ganten D (1987) The endogenous tissue renin-angiotensin systems: From molecular biology to therapy. Am J Med 84 (suppl 3A): 28–36CrossRefGoogle Scholar
  58. 58.
    Kannel WB, Dawber TR (1973) Hypertensive cardiovascular disease. The Framingham Study. In: Onesti G, Kim KE, Maya JH, eds. Hypertension: mechanisms and management. New York: Grune and Stratton:93Google Scholar
  59. 59.
    Kannel WB (1976) Some lessons in cardiovascular epidemiology from Framingham. Am J Cardiol 37: 269–282PubMedCrossRefGoogle Scholar
  60. 60.
    Keck M (1987) Anti-ischemic effect of captopril in patients with stable angina pectoris. Herz Kreisl 19: 319–321Google Scholar
  61. 61.
    Kelm M, Schrader J (1988) Nitric oxide release from the isolated guinea pig heart. Eur J Pharmacol 155: 317–321PubMedCrossRefGoogle Scholar
  62. 62.
    Kennedy JW, Kaiser GC, Fisher LD (1981) Clinical and angiographie predictors of operative mortality from the Collaberative Study in Coronary Artery Surgery (CASS). Circulation 63: 793–802PubMedCrossRefGoogle Scholar
  63. 63.
    Khairallah PA (1972) Action of angiotensin on adrenergic nerve endings: Inhibition of norepinephrine uptake. Fed Proc 31: 1351–1357PubMedGoogle Scholar
  64. 64.
    Kimura E, Hashimoto K, Furukawa S (1973) Changes in bradykinin level in coronary sinus blood after the experimental occlusion of a coronary artery. Am Heart J 85: 635–647PubMedCrossRefGoogle Scholar
  65. 65.
    Kiowski W, Zuber M, Elsasser S, Erne P, Pfisterer M, Burkart F (1991) Coronary vasodilatation and improved myocardial lactate metabolism after angiotensin converting enzyme inhibition with cilazapril in patients with congestive heart failure. Am Heart J 122: 1382–1388PubMedCrossRefGoogle Scholar
  66. 66.
    Kirchheim HR, Ehmke H, Hackenthal E (1987) Autoregulation of renal blood flow, glomerular filtration rate and renin release in conscious dogs. Pflügers Arch 410: 441–449PubMedCrossRefGoogle Scholar
  67. 67.
    Koch-Weser J (1964) Myocardial actions of angiotensin. Circ Res 14: 337–344PubMedCrossRefGoogle Scholar
  68. 68.
    Lai C, Onnis E, Orani E (1987) Antiischemic activity of ACE inhibitor enalapril in normotensive patients with stable effort angina. J Am Coll Cardiol 9: 192AGoogle Scholar
  69. 69.
    Leimgruber PP, Roubin GS, Hollman J, Cotsonis GA, Meier B, Douglas JS, King SB III, Gruentzig AR (1986) Restenosis after successful angioplasty in patients with single-vessel disease. Circulation 73: 710–717PubMedCrossRefGoogle Scholar
  70. 70.
    Liang CS, Gavras H, Hood B (1978) Renin-angiotensin system inhibition in conscious sodium depleted dogs. Effects on systemic and coronary hemodynamics. J Clin Invest 62: 874–881CrossRefGoogle Scholar
  71. 71.
    Liang CS, Gavras H, Black J (1982) Renin-angiotensin system inhibition in acute myocardial infarction in dogs. Effects on systemic hemodynamics, myocardial blood flow, segmental myocardial function and infarct size. Circulation 66: 1249–1255PubMedCrossRefGoogle Scholar
  72. 72.
    Li K, Chen X (1987) Protective effects of captopril and enalapril on myocardial ischemia and reperfusion damage of rat. J Mol Cell Cardiol 19: 909–915PubMedCrossRefGoogle Scholar
  73. 73.
    Limas CJ (1974) Stimulation by angiotensin of myocardial prostaglandins. Biochim Biophys Acta 337: 417–420PubMedCrossRefGoogle Scholar
  74. 74.
    Lindpaintner K, Ganten D (1991) The cardiac renin-angiotensin system. An appraisal of present experimental and clinical evidence. Circ Res 68: 905–920PubMedCrossRefGoogle Scholar
  75. 75.
    Linz W, Schölkens BA, Manwen J (1986) The heart as a target for converting enzyme inhibitors: Studies in ischaemic isolated working rat hearts. J Hypertension 4 (suppl 6): S477 - S479Google Scholar
  76. 76.
    Linz W, Schölkens BA, Yi-Fan Han (1986) Beneficial effects of the converting enzyme inhibitor ramipril in ischemic hearts. J Hypertens 8 (suppl 10): S91 - S99Google Scholar
  77. 77.
    Linz W, Schölkens BA (1987) Influence of local converting enzyme inhibition on angiotensin and bradykinin effects in ischemic rat hearts. J Cardiovasc Pharmacol 10 (suppl 7): S75 - S82PubMedCrossRefGoogle Scholar
  78. 78.
    Linz W, Schölkens BA, Kaiser J (1989) Cardiac arrhythmias are ameliorated by local inhibition of angiotensin formation and bradykinin degradation with the converting-enzyme inhibitor ramipril. Cardiovasc Drugs Ther 3: 873–882PubMedCrossRefGoogle Scholar
  79. 79.
    Majesky MW, Reidy MA, Bowen-Pope DF, Hart CE, Wilcox JN, Schwartz SM (1990) PDGF ligand and receptor gene expression during repair ligand. J Cell Biol 111: 2149–2158PubMedCrossRefGoogle Scholar
  80. 80.
    McAlpine HM, Morton JJ, Leckie B, Dargie HJ (1987) Use of oral ACE-inhibitors post infarct. J Cardiovasc Pharmacol 9 (suppl 2): S25 - S30PubMedCrossRefGoogle Scholar
  81. 81.
    McKay RG, Pfeffer MA, Pasternak RC (1986) Left ventricular remodeling after myocardial infarction: a corollary to infarct expansion. Circulation 74: 693–702PubMedCrossRefGoogle Scholar
  82. 82.
    MERCATOR Study Group (1992) Does the new angiotensin converting enzyme inhibitor cilazapril prevent restenosis after percutaneous transluminal coronary angioplasty? Circulation 86: 100–110Google Scholar
  83. 83.
    Mettauer B, Rouleau J-L, Daly P (1986) The effect of captopril on the coronary circulation and myocardial metabolism of patients with coronary artery disease. Postgrad Med J 62 (suppl 1): 54–58PubMedGoogle Scholar
  84. 84.
    Michorowski B, Ceremuzynski L (1983) The renin-angiotensin-aldosterone system and the clinical course of acute myocardial infarction. Eur Heart J 4: 259–264PubMedGoogle Scholar
  85. 85.
    Mulligan IP, Fraser AG, Lewis MJ, Henderson AH (1989) Effects of enalapril on myocardial noradrenaline overflow during exercise in patients with chronic heart failure. Br Heart J 61: 23–28PubMedCrossRefGoogle Scholar
  86. 86.
    Naftilan AJ, Pratt RE, Dzau VJ (1989) Induction of platelet derived groth factor A chain and C-myc gene expressions by angiotensin II in culture rat vascular smooth muscle cells. J Clin Invest 83: 1419–1424PubMedCrossRefGoogle Scholar
  87. 87.
    Needleman P, Marshall GR, Sobel BE (1975) Hormone interactions in the isolated rabbit heart. Synthesis and coronary vasomotor effects of prostaglandins, angiotensin and bradykinin. Circ Res 37: 802–808PubMedCrossRefGoogle Scholar
  88. 88.
    Palmer RMJ, Ferrige AG, Moncada S (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327: 524–526PubMedCrossRefGoogle Scholar
  89. 89.
    Panza JA, Quyyumi AA, Brush JE Jr, Epstein SE (1990) Abnormal endothelium-dependent vascular relaxation in patients with essential hypertension. N Engl J Med 323: 22–27PubMedCrossRefGoogle Scholar
  90. 90.
    Pfeffer JM, Pfeffer MA, Braunwald E (1985) Influence of chronic captopril therapy on the infarcted left ventricle of the rat. Circ Res 57: 84–95PubMedCrossRefGoogle Scholar
  91. 91.
    Pfeffer MA, Pfeffer JM, Steinberg C, Finn P (1985) Survival after an experimental myocardial infarction: beneficial effects of long-term therapy with captopril. Circulation 72: 406–412PubMedCrossRefGoogle Scholar
  92. 92.
    Pfeffer MA, Lamas GA, Vaughan DE, Parisi AF, Braunwald E (1988) Effect of captopril on progressive ventricular dilatation after myocardial infarction. N Engl J Med 319: 80–86PubMedCrossRefGoogle Scholar
  93. 93.
    Pfeffer MA, Braunwald E (1990) Ventricular remodeling after myocardial infarction: experimental observations and clinical implications. Circulation 81: 1161–1172PubMedCrossRefGoogle Scholar
  94. 94.
    Pfeffer JM, Pfeffer MA, Fletcher PJ, Braunwald E (1991) Progressive ventricular remodeling in rat with myocardial infarction. Am J Physiol 260: H1406 - H1414PubMedGoogle Scholar
  95. 95.
    Pfeffer MA, Braunwald E, et al. (1992) Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med 327: 669–677PubMedCrossRefGoogle Scholar
  96. 96.
    Poulsen K, Poulsen LL (1971) Simultaneous determination of plasma converting enzyme and angiotensinase activity by radioimmunoassay. Clin Sci 40: 443–449PubMedGoogle Scholar
  97. 97.
    Powell JS, Clozel JP, Müller RK, Kuhn H, Hefti F, Hosang M, Baumgartner HR (1989) Inhibitors of angiotensin-converting enzyme prevent myointimal proliferation after vascular injury. Science 245: 186–188PubMedCrossRefGoogle Scholar
  98. 98.
    Rietbrock N, Thürmann P, Kirsten R (1988) Anti-ischeamic effect of enalapril in coronary heart disease. A randomized placebo-controlled double blind trial on 12 patients. Dtsch Med Wschr 113: 300–302PubMedCrossRefGoogle Scholar
  99. 99.
    Rochette L, Ribuot C, Belichard P (1987) Protective effect of angiotensin converting enzyme inhibitors (CEI): Captopril and perindopril on vulnerability to ventricular fibrillation during myocardial ischemia and reperfusion in rat. Clin Exp Theory and Practice A9: 365–368CrossRefGoogle Scholar
  100. 100.
    Roth RH (1972) Action of angiotensin on adrenergic nerve endings: Enhancement of norepinephrine biosynthesis. Fed Proc 31: 1358–1364PubMedGoogle Scholar
  101. 101.
    Rouleau J-L, Chatterjee K, Benge W, Parmley WW, Hiramatsu B (1982) Alterations in left ventricular function and coronary hemodynamics with captopril, hydralazine and prazosin in chronic ischemic heart failure: A comparative study. Circulation 65: 671–678PubMedCrossRefGoogle Scholar
  102. 102.
    Rousseau MF, Close P, Pouleur H (1989) Are the angiotensin-converting enzyme inhibitors poor anti-ischemic drugs? Circulation 80 (suppl II): I152Google Scholar
  103. 103.
    Rubio R, Berne RM (1969) Release of adenosine by the normal myocardium and its relationship to the regulation of coronary resistance. Circ Res 25: 407–412PubMedCrossRefGoogle Scholar
  104. 104.
    Schölkens BA, Linz W, Koenig W (1988) Effects of the angiotensin converting enzyme inhibitor ramipril in isolated ischemic rat heart are abolished by a bradykinin antagonist. J Hypertens 6: S25 - S28CrossRefGoogle Scholar
  105. 105.
    Schoenberger JA (1988) Emerging benefits of angiotensin converting enzyme inhibitors versus other antihypertensive agents. Am J Med 84 (suppl 4A): 30–35PubMedCrossRefGoogle Scholar
  106. 106.
    Schwartzkopff B, Vogt M, Knauer S, Motz W, Strauer BE (1991) Medial hypertrophy of intramural coronary arteries in patients with reduced coronary reserve in hypertensive heart disease. Circulation 84 (suppl II): II - 479Google Scholar
  107. 107.
    Scott-Burden T, Resink T.1, Hahn AW, Bühler FR (1990) Induction of thrombospondin expression in vascular smooth muscle cells by angiotensin II. J Cardiovasc Pharmacol 16 (suppl 7): 17–20Google Scholar
  108. 108.
    Serruys PW, Luijten HE, Beatt KJ, Geuskens R, de Feyter Pi, et al. (1988) Incidence of restenosis after successful coronary angioplasty: A time-related phenomenon: A quantitative angiographie study in 342 consecutive patients at 1, 2, 3 and 4 months. Circulation 77: 361–371Google Scholar
  109. 109.
    Sharpe N (1991) Angiotensin-converting enzyme inhibitors in heart failure: a role after myocardial infarction. J Cardiovasc Pharmacol 18 (suppl 2): S99 - S104PubMedGoogle Scholar
  110. 110.
    The SOLVD Investigators (1990) Studies of left ventricular dysfunction (SOLVD)-rationale, design and methods: two trials that evaluate the effect of enalapril in patients with reduced ejection fraction. Am J Cardiol 66: 315–322CrossRefGoogle Scholar
  111. 111.
    The SOLVD Investigators (1992) Effect of enalapril on mortality and the development of heart failure in asymptomatic patients with reduced left ventricular ejection fractions. N Engl J Med 327: 685–691CrossRefGoogle Scholar
  112. 112.
    Starke K, Werner U, Schuermann HJ (1966) Wirkungen von Angiotensin auf Funktion and Noradrenalinabgabe isolierter Kaninchenherzen in Ruhe and bei Sympathikusreizung. Naunyn Schmiedebergs Arch Pharmacol 265: 170–186CrossRefGoogle Scholar
  113. 113.
    Starke K (1971) Action of angiotensin on uptake, release, and metabolism of 14C NE by isolated rabbit hearts. Eur J Pharmacol 14: 112–123PubMedCrossRefGoogle Scholar
  114. 114.
    Strauer BE (1990) The significance of coronary reserve in clinical heart disease. J Am Coll Cardiol 15: 775–782PubMedCrossRefGoogle Scholar
  115. 115.
    Strozzi C, Cocco G, Portaluppi F, Urso L, Alfrigo R, Rizzo A, Tasini MT, Montanari L, Zannell AH (1987) Ergometric evaluation of the effects of captopril in hypertensive patients with stable angina. Curr Ther Res 41: 301–304Google Scholar
  116. 116.
    Strozzi C, Cocco G, Portaluppi F, Urso L, Alfrigo R, Tasini MT, Montanari L, Al Yassini K, Rizzo A (1987) Effects of captopril on the physical work capacity of normotensive patients with stable effort angina. Cardiology 74: 226–228PubMedCrossRefGoogle Scholar
  117. 117.
    Swartz SL, Williams GH, Hollenberg NK, Levine L, Denk JR, Moore TJ (1980) Captopril-induced changes in prostaglandin production. J Clin Invest 65: 1257–1264PubMedCrossRefGoogle Scholar
  118. 118.
    Swedberg K, Held P, Kjekshus J, et al. (1991) Effects of the early administration of enalapril on mortality in patients with acute myocardial infarction. N Engl J Med 327: 678–684CrossRefGoogle Scholar
  119. 119.
    Tardieu A, Virot P, Vandroux JC (1986) Effects of captopril on myocardial perfusion in patients with coronary insufficiency: Evaluation by the exercise test and quantitative myocardial tomoscintigraphy using thallium-201. Postgrad Med J 62 (suppl 1): 38–41PubMedGoogle Scholar
  120. 120.
    Unger T, Gohlke P, Paul M, Rettig R (1991) Tissue renin-angiotensin system: Fact or fiction? J Cardiovasc Pharmacol 18 (suppl 2): 20–28Google Scholar
  121. 121.
    Unterberg C, Buchwald A, Vogt A (1990) Akute Effekte des Angiotensin-Converting-Enzym-Hemmers Ramipril bei Patienten mit koronarer Herzerkrankung. Med Klin 85: 78–81Google Scholar
  122. 122.
    van Gilst WH, de Graeff PA, Kingma JH (1984) Captopril reduces purine loss and reperfusion arrhythmias in the rat heart after coronary artery occlusion. Eur J Pharmacol 100: 113–117PubMedCrossRefGoogle Scholar
  123. 123.
    van Gilst WH, de Graeff PA, Wesseling H (1986) Reduction of reperfusion arrhythmias in the ischemic isolated rat heart by angiotensin converting enzyme inhibitors: A comparison of captopril, enalapril, and HOE 498. J Cardiovasc Pharmacol 8: 722–728PubMedGoogle Scholar
  124. 124.
    Van Gilst WH, Scholtens E, de Graeff PA (1988) Differential influences of angiotensin converting-enzyme inhibitors on the coronary circulation. Circulation 77 (suppl I): 124–129Google Scholar
  125. 125.
    Vanhoutte PM, Auch-Schwelk W, Biondi ML, Lorenz RR, Schini VB, Vidal MJ (1989) Why are converting enzyme inhibitors vasodilators? Br J Clin Pharmacol 28: 955–104SCrossRefGoogle Scholar
  126. 126.
    Vogt M, Ulbricht JU, Motz W (1988) Lack of evidence for antianginal effects of enalapril. Circulation 78 (suppl II): II - 328Google Scholar
  127. 127.
    Vogt M, Motz W, Strauer BE (1989) Coronary flow reserve in arterial hypertension. Scand J Clin Lab Invest 49 (suppl): 196: 7–14Google Scholar
  128. 128.
    Vogt M, Motz W, Pölitz B, Scheler S, Strauer BE (1991) Improvement of coronary reserve by chronic treatment with ACE-inhibitors. Circulation 84 (suppl II): II - 136Google Scholar
  129. 129.
    Waeber B, Nussberger J, Brunner HR (1990) Angiotensin converting enzyme inhibition in arterial hypertension. Wien Med Wschr 1 /2: 22–29Google Scholar
  130. 130.
    Webster WM, Fitzpatrick MA, Nicholls MG, Ikram H, Wells JE (1985) Effect of enalapril on ventricular arrhythmias in congestive heart failure. Am J Cardiol 56: 566–569PubMedCrossRefGoogle Scholar
  131. 131.
    Wenting GJ, Man in’t Veld AJ, Woittiez AJ, Derkx FH, Schalekamp AD (1984) Captopril in the treatment of severe acute and chronic heart failure. Progr Pharmacol 5: 107–114Google Scholar
  132. 132.
    Wesseling H, De Graeff PA, Van Gilst WH, Kingma JH, de Langen CDJ (1989) Cardiac arrhythmias: A new indication for angiotensin-converting enzyme inhibitors. J Hum Hypertens 3: 89–95PubMedGoogle Scholar
  133. 133.
    Westfall TC (1977) Local regulation of adrenergic neurotansmission. Physiol Rev 57: 659–729PubMedGoogle Scholar
  134. 134.
    Westlin W, Mullane K (1988) Does captopril attenuate reperfusion-induced myocardial dysfunction by scavenging free radicals? Circulation 77 (suppl I):I-30-I-34Google Scholar
  135. 135.
    White HD, Norris RM, Brown MA, Brandt PWT, Whitlock RML, Wild CJ (1987) Left ventricular end-systolic as the major determinant of survival after recovery from myocardial infarction. Circulation 76: 44–51PubMedCrossRefGoogle Scholar
  136. 136.
    Yanagisawa M, Kurihara H, Kimura S (1988) A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 331: 411–416CrossRefGoogle Scholar
  137. 137.
    Yang HYT, Erdös EG (1967) Second kininase in human blood plasma. Nature 215: 1402–1403PubMedCrossRefGoogle Scholar
  138. 138.
    Yang HYT, Erdös EG, Levin Y (1971) Characterization of a dipeptide hydrolase (kininase II: angiotensin I converting enzyme). J Pharmacol Exp Ther 177: 291–300PubMedGoogle Scholar
  139. 139.
    Young MA, Vatner SF (1986) Regulation of large coronary arteries. Cire Res 59: 579–585CrossRefGoogle Scholar
  140. 140.
    Zannad F, Gilgenkrantz JM (1989) ACE inhibitors in hypertension: A European viewpoint. Cardiology 76 (suppl 12): 31–41PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Martin Vogt
    • 1
  • W. Motz
    • 1
  • B. E. Strauer
    • 1
  1. 1.Medizinische Klinik und Polyklinik B, Abteilung für Kardiologie, Pneumologie und AngiologieHeinrich-Heine-Universität DüsseldorfDeutschland

Personalised recommendations