Advertisement

Lokale Expression und pathophysiologische Rolle von Renin-Angiotensin im Gefäßsystem und im Herzen

  • Victor J. Dzau

Zusammenfassung

Während das zirkulierende Renin-Angiotensin-System (RAS) bei der kurzfristigen Aufrechterhaltung der kardiovaskulären Homöostase eine wichtige Rolle spielt, weisen neueste Studien darauf hin, daß das endogene RAS in Zielgeweben eine Rolle bei der langfristigen kardiovaskulären Regulation spielt. Dieser Artikel konzentriert sich auf die verschiedenen Wirkungen des Angiotensin Converting Enzyme (ACE) im Gewebe und von Angiotensin II (Ang II), seinem aktiven Peptidprodukt. Von Angiotensin II wurde nachgewiesen, daß es in glatten Gefäßmuskelzellen ein potenter Wachstumsfaktor ist. Je nach den lokalen Gegebenheiten kann die vaskuläre Reaktion eine Hypertrophie oder eine Hyperplasie sein. Die molekularen Mechanismen, die bei den Interaktionen von Angiotensin II mit Zellprodukten aus Endothel- oder glatten Muskelzellen beteiligt sind, können bei der Modulation der Gefäßstruktur bei der Hypertonie und bei einer Gefäßschädigung eine wichtige Rolle spielen. Auch gibt es Hinweise dafür, daß Angiotensin II bei der Entwicklung einer linksventrikulären Hypertrophie beim Hochdruck eine Rolle spielt. Darüber hinaus kann das kardiale RAS zur Pathophysiologie der Herzinsuffizienz beitragen. Experimentelle und klinische Studien mit ACE-Hemmern deuten darauf hin, daß die ACE-Aktivität im Gewebe bei der Entwicklung der Atherosklerose, bei der kardialen Hypertrophie und beim kardialen Umbau von Bedeutung ist.

Schlüsselwörter

Angiotensin Converting Enzyme Angiotensin II Wachstumsfaktoren Inhibitoren Herzinfarkt vaskuläre Hypertrophie 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Aberg G, Ferrer P(1990) Effects of captopril on atherosclerosis in cynomolgus monkeys. J Cardiovasc Pharmacol 15 (suppl 5 ): 65–72Google Scholar
  2. 2.
    Admiraal PJJ, Derkx FHM, Jan Danser AH, Pieterman H, Schalenkamp MADH (1990) Metabolism and production of angiotensin I in different vascular beds in subjects with hypertension.. Hypertension 15: 44–55Google Scholar
  3. 3.
    Alhenc-Gelas F, Soubrier F, Hubert C, Allegrini J, Corvol P (1989) The peculiar characteristics of the amino acid sequence of angiotensin I-converting enzyme, as determined by cDNA cloning of the human endothelial enzyme. J Cardiovasc Pharmacol 14 (suppl 4): 6–9CrossRefGoogle Scholar
  4. 4.
    Alhenc-Gelas F, Soubrier F, Hubert C, Allegrini J, Lattion AL, Corvol P (1990) The angiotensin I-converting enzyme (kininase II): progress in molecular and genetic structure. J Cardiovasc Pharmacol 15 (suppl 6): 25–29Google Scholar
  5. 5.
    Becker RHA, Weimer G, Linz W (1991) Preservation of endothelial function by ramipril in rabbits on a long-term atherogenic diet. J Cardiovasc Pharmacol 18 (suppl 2): S110 — S115PubMedGoogle Scholar
  6. 6.
    Cambien F, Poirier O, Lecerf L, Evans A, Cambou JP, Arveller D, Luc G, Bard JM, Bara L, Ricard S, Tiret L, Amouyel P, Alhenc-Gelas F, Soubrier F (1992) Deletion polymorphism in the gene for angiotensin-converting enzyme is a potent risk factor for myocardial infarction. Nature 359: 641–644PubMedCrossRefGoogle Scholar
  7. 7.
    Campbell DJ (1985) The site of angiotensin production. J Hypertension 3: 730–737CrossRefGoogle Scholar
  8. 8.
    Campbell DJ (1987) Circulating and tissue angiotensin systems. J Clin Invest 79: 1–6PubMedCrossRefGoogle Scholar
  9. 9.
    Carretero OA, Miyazaki S, Scicli AG (1981) Role of kinins in the acute antihypertensive effect of the converting enzyme inhibitor, captopril. Hypertension 3: 18–22PubMedCrossRefGoogle Scholar
  10. 10.
    Chevillard C, Brown NL, Jouquey S, Mathiou M-N, Laliberte F, Gamon G (1989) Cardiovascular actions and tissue-converting enzyme inhibitory effects of chronic enalapril and trandolapril treatment of spontaneously hypertensive rats. J Cardiovasc Pharmacol 14: 297–301PubMedCrossRefGoogle Scholar
  11. 11.
    Chobanian AV (1990) The effects of ACE inhibitors and other antihypertensive drugs on cardiovascular risk factors and atherogenesis. Clin Cardiol 13:VII-43—VII-48Google Scholar
  12. 12.
    Chobanian AV, Haudenschild CC, Nickerson C, Drago R (1990) Antiatherogenic effect of captopril in the Watanabe heritable hyperlipidemic rabbit. Hypertension 15: 327–331PubMedCrossRefGoogle Scholar
  13. 13.
    Crawford DC, Chobanian AV, Brecher P (1992) Angiotensin II increases fibronectin expression in rat cardiac fibroblasts in vivo (Abstr). Circulation 86 (suppl I): I - 89Google Scholar
  14. 14.
    Daemen MJAP, Lombardi DM, Bosman FT, Schwartz SM (1991) Angiotensin II induces smooth muscle cell proliferation in the normal and injured rat arterial wall. Circ Res 68: 450–456Google Scholar
  15. 15.
    Dahlöf B, Pennert K, Hansson L (1992) Reversal of left ventricular hypertrophy in hypertensive patients. A metaanalysis of 109 treatment studies. Am J Hypertension 5: 95–110Google Scholar
  16. 16.
    Drexler H, Lindpaintner K, Lu W, Schieffer B, Ganten D (1989) Transient increase in the expression of cardiac angiotensinogen in a rat model of myocardial infarction and failure (Abstr). Circulation 80 (suppl II): II - 459CrossRefGoogle Scholar
  17. 17.
    Dzau V (1987) Vascular angiotensin pathways: new therapeutic target. J Cardiovasc Pharmacol 10 (suppl 7): 9–16CrossRefGoogle Scholar
  18. 18.
    Dzau VJ, Colucci WS, Hollenberg NK, Williams GH (1981) Relation of the renin-angiotensin-aldosterone system to clinical state in congestive heart failure. Circulation 63: 645–651PubMedCrossRefGoogle Scholar
  19. 19.
    Dzau VJ, Ellison KE, Brody T, Ingelfinger J, Pratt RE (1987) A comparative study of the distributions of renin and angiotensinogen messenger ribonucleic acids in rat and mouse tissues. Endocrinology 120: 2334–2338PubMedCrossRefGoogle Scholar
  20. 20.
    Dzau VJ, Gibbons GH (1987) Autocrine-paracrine mechanisms of vascular myocytes in hypertension. Am J Cardiol 60: 991–1031Google Scholar
  21. 21.
    Dzau VJ, Gibbons GH, Pratt RE (1991) Molecular mechanisms of vascular renin-angiotensin system in myointimal hyperplasia. Hypertension 18 (suppl 1I):II-100—II-105Google Scholar
  22. 22.
    Dzau VJ, Pratt RE (1986) Renin-angiotensin system: biology, physiology and pharmacology. In: Haber E, Morgan H, Katz A, Fozzard H (eds) Handbook of experimental cardiology; Raven Press, New York, pp 1631–1661Google Scholar
  23. 23.
    Dzau VJ, Re RN (1987) Evidence for the existence of renin in the heart. Circulation 73 (suppl I): 1134–1136Google Scholar
  24. 24.
    Eichstaedt H, Danne O, Langer M, Cordes M, Schubert C, Felix R, Schmutzler H (1989) Regression of left ventricular hypertrophy under ramipril treatment investigated by nuclear magnetic resonance imaging. J Cardiovasc Pharmacol 13 (suppl 3): 75–80CrossRefGoogle Scholar
  25. 25.
    Fabris B, Jackson B, Kohzuki M, Perich R, Johnston CI (1990) Increased cardiac angiotensin-converting enzyme in rats with chronic heart failure. Clin Exp Pharmacol Physiol 17: 309–314PubMedCrossRefGoogle Scholar
  26. 26.
    Farhy RD, Ho KL, Carretero OA, Scicli AG (1992) Kinins mediate the antiproliferative effect of ramipril in rat carotid artery. Biochem and Biophys Res Comm 182: 283–288CrossRefGoogle Scholar
  27. 27.
    Folkow B (1990) “Structural factor” in primary and secondary hypertension. Hypertension 16:89–101Google Scholar
  28. 28.
    Ganten D, Hutchinson JS, Haebara H, Schelling P, Fischer H, Ganten U (1976) Tissue iso-renins. Clin Sci Mol Med 51: 117–120Google Scholar
  29. 29.
    Garavaglia GE, Messerli FH, Nunez BD, Schmieder RE, Frohlich ED (1988) Immediate and short-term cardiovascular effects of a new converting enzyme inhibitor (lisinopril) in essential hypertension. Am J Cardiol 62: 912–916PubMedCrossRefGoogle Scholar
  30. 30.
    Geisterfer AAT, Peach MJ, Owens GK (1988) Angiotensin II induces hypertrophy, not hyperplasia, of cultured rat aortic smooth muscle cells. Circ Res 62: 749–756PubMedCrossRefGoogle Scholar
  31. 31.
    Gibbons GH, Pratt RE, Dzau VJ (1989) Angiotensin is a bifunctional modulator of vascular smooth muscle cell growth: Interaction with basic fibroblast growth factor (abstract). Hypertension 14: 358Google Scholar
  32. 32.
    Gibbons GH, Pratt RE, Dzau VJ (1992) Vascular smooth muscle cell hypertrophy vs. hyperplasia: autocrine transforming growth factor-131 expression determines growth response to angiotensin II. J Clin Invest 90: 456–461PubMedCrossRefGoogle Scholar
  33. 33.
    Gibbons GH, Pratt RE, Dzau VJ (1992) Role of autocrine transforming growth factor-ß1 expression and activation in determining vascular myocyte growth response to angiotensin II versus basic fibroblast growth factor ( Abstr ). Clin Res 39: 287AGoogle Scholar
  34. 34.
    Griendling KK, Berk BC, Ganz P, Gimbrone MA, Alexander RW (1987) Angiotensin II stimulation of vascular smooth muscle phosphoinositide metabolism: state of the art lecture. Hypertension 9 (suppl 3):III-181—III-185Google Scholar
  35. 35.
    Hermans WR, Rensing BJ, Foley DP, Deckers JW, Rutsch W, Enamuelsson H, Danchin N, Wijns W, Chappuis F, Serruys PW (1992) Therapeutic dissection after successful coronary balloon angioplasty: No influence on restenosis or on clinical outcome in 693 patients. J Am Coll Cardiol 20: 767–780PubMedCrossRefGoogle Scholar
  36. 36.
    Hilgers KF, Kuczera M, Wilhem MJ, Wiecek A, Ritz E, Ganten D, Mann JFE (1989) Angiotensin formation in the isolated rat hindlimb. J Hypertension 7: 789–798CrossRefGoogle Scholar
  37. 37.
    Hirsch AT, Dzau VJ (1990) Tissue renin-angiotensin systems in the pathophysiology of heart failure. In: Brachmann J, Dietz R, Kübler W (eds) Heart failure and arrhythmias; Springer-Verlag, HeidelbergGoogle Scholar
  38. 38.
    Hirsch AT, Talsness CE, Schunkert H, Paul M, Dzau VJ (1991) Tissue-specific activation of cardiac angiotensin-converting enzyme in experimental heart failure. Circ Res 69: 475–482PubMedCrossRefGoogle Scholar
  39. 39.
    Hirsch AT, Talsness CE, Smith AD, Schunkert H, Ingelfinger JR, Dzau VJ (1992) Differential effects of captopril and enalapril on tissue renin-angiotensin systems in experimental heart failure. Circulation 86: 1566–1574PubMedCrossRefGoogle Scholar
  40. 40.
    Ichikawa I, Brenner BM (1984) Glomerular actions of angiotensin II. Am J Med 76: 43–49PubMedCrossRefGoogle Scholar
  41. 41.
    Itoh H, Pratt RE, Dzau VJ (1990) Atrial natriuretic factor inhibits hypertrophy of vascular smooth muscle cells. J Clin Invest 86: 1690–1697PubMedCrossRefGoogle Scholar
  42. 42.
    Jackson B, Mendelsohn FA, Johnston CI (1991) Angiotensin-converting enzyme inhibition: prospects for the future. J Cardiovasc Pharmacol 18 (suppl 7): 4–8CrossRefGoogle Scholar
  43. 43.
    Jayakody L, Kappagoda T, Senaratne MPJ, Thomson ABR (1988) Impairment of endothelium-dependent relaxation: an early marker for atherosclerosis in the rabbit. Br J Pharmacol 94: 335–346PubMedCrossRefGoogle Scholar
  44. 44.
    Katoh Y, Komuro I, Shibasaki Y, Yamaguchi H, Yazaki Y (1989) Angiotensin II induces hypertrophy and oncogene expression in cultured rat heart myocytes (Abstr). Circulation 80 (suppl II): II - 450Google Scholar
  45. 45.
    Koch Weser J (1964) Myocardial actions of angiotensin II. Circ Res 14: 337–344PubMedCrossRefGoogle Scholar
  46. 46.
    Koch-Weser J (1965) Nature of the inotropic action of angiotensin on ventricular myocardium. Circ Res 16: 230–237PubMedCrossRefGoogle Scholar
  47. 47.
    Komuro I, Kurabayashi M, Takaku F, Yazaki Y (1988) Expression of cellular oncogenes in the myocardium during the developmental state and pressure-overloaded hypertrophy of the rat heart. Circ Res 62: 1075–1079PubMedCrossRefGoogle Scholar
  48. 48.
    Kubo SH, Clark M, Laragh JH, Borer JH, Cody RI (1987) Identification of normal neurohormonal activity in mild congestive heart failure and stimulating effect of upright posture and diuretics. Am J Cardiol 60: 1322–1328PubMedCrossRefGoogle Scholar
  49. 49.
    Lindpaintner K, Jin M, Wilhelm MJ, Suzuki F, Linz W, Schoelkens BA, Ganten D (1988) Intracardiac generation of angiotensin and its physiologic role. Circulation 77 (suppl 1): 1–18CrossRefGoogle Scholar
  50. 50.
    Linz W, Scholkens BA, Ganten D (1989) Converting enzyme inhibition specifically prevents the development and induces regression of cardiac hypertrophy in rats. Clin Ex-per Hypertens All(7): 1325–1350Google Scholar
  51. 51.
    Michel JB, Cattion AL, Salzmann JL, de Lourdes Cerol M, Phillipe M, Camilleri JP, Coruol P (1988) Hormonal and cardiac effects of converting enzyme inhibition in rat myocardial infarction. Circ Res 62: 641–650PubMedCrossRefGoogle Scholar
  52. 52.
    Muller J, Lund EG, Hofstetter L, Brunner DB, Haldy P (1982) Stimulation of aldosterone biosynthesis by sodium sequestration: role of angiotensin II. Am J Physiol 243: E450 — E457PubMedGoogle Scholar
  53. 53.
    Naftilan AJ, Pratt RE, Dzau VJ (1989) Induction of platelet-derived growth factor A-chain and c-myc gene expressions by angiotensin II in cultured rat vascular smooth muscle cells. J Clin Invest 83: 1419–1424PubMedCrossRefGoogle Scholar
  54. 54.
    Naftilan AJ, Pratt RE, Eldridge CS, Lin HL, Dzau VJ (1989) Angiotensin II c-fos expression in smooth muscle via transcriptional control. Hypertension 13: 706–711PubMedCrossRefGoogle Scholar
  55. 55.
    Nakashima Y, Fouad FM, Tarazi RC (1984) Regression of left ventricular hypertrophy from systemic hypertension by enalapril. Am J Cardiol 53: 1044–1049PubMedCrossRefGoogle Scholar
  56. 56.
    Okamura T, Myazcki M, Inagemi T, Toda N (1986) Vascular renin-angiotensin system in two-kidney, one-clip hypertensive rats. Hypertension 8: 560–565PubMedCrossRefGoogle Scholar
  57. 57.
    Oliver JA, Sciacca RR (1984) Local generation of angiotensin II as a mechanism of regulation of peripheral vascular tone in the rat. J Clin Invest 74: 1247–1251PubMedCrossRefGoogle Scholar
  58. 58.
    Oren S, Messerli FH, Grossman E, Garavaglia GE, Frolich ED (1991) Immediate and short-term effects of fosinopril, a new angiotensin converting enzyme inhibitor, in patients with essential hypertension. J Am Coll Cardiol 17: 1183–1187PubMedCrossRefGoogle Scholar
  59. 59.
    Paul M, Schunkert H, Allen P, Dzau VJ (1990) Widespread distribution of angiotensin converting enzyme mRNA in human tissues. J Hypertens 8 (suppl 3): 36Google Scholar
  60. 60.
    Pfeffer JM, Pfeffer MA (1988) Angiotensin converting enzyme inhibition and ventricular remodeling in heart failure. Am J Med 84: 37–44PubMedCrossRefGoogle Scholar
  61. 61.
    Pfeffer JM, Pfeffer MA, Fletcher PJ, Braunwald E (1991) Progressive ventricular remodeling in rat with myocardial infarction. Am J Physiol 260 (Pt. 2): H1406–1414PubMedGoogle Scholar
  62. 62.
    Pfeffer et al., The SAVE Investigators (1992) Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med 327: 669–677Google Scholar
  63. 63.
    Powell JS, Clozel JP, Muller RKM, Kuhn H, Hefti F, Hosang M, Baumgartner HR (1989) Inhibitors of angiotensin-converting enzyme prevent myointimal proliferation after vascular injury. Science 245: 186–188PubMedCrossRefGoogle Scholar
  64. 64.
    Rakugi H, Jacob HJ, Ingelfmger JR, Krieger JE, Dzau VJ, Pratt RE (1990) Angiotensinogen gene expression in the myointima after vascular injury (abstract). Hypertension 16: 345Google Scholar
  65. 65.
    Rakugi H, Krieger J, Wang DS, Dzau VJ, Pratt RE (1991) Induction of angiotensin converting enzyme in neointima after balloon injury. Circulation 84 (suppl II): II - 113Google Scholar
  66. 66.
    Ragazzi E, Froldi G, Pandolfo L et al. (1989) Segmental impairment of endothelium-mediated relaxation in thoracic aortas from atherosclerotic rabbits. Comparison to cholesterol infiltration and energy metabolism. Artery 16: 327–345Google Scholar
  67. 67.
    Reidy MA, Fingerle J, Au YP, Majesky MW (1989) Correlation of mRNA expression of cellular mitogens and smooth muscle cell proliferation in arteries denuded of endothelium (Abstr). J Cell Biochem 13E (suppl 13): 194Google Scholar
  68. 68.
    Rosenthal JH, Pfieffer B, Mecheilor ML, Pschorr J, Jacob ICM, Dahlheim H (1984) Investigations of components of the renin-angiotensin system in rat vascular tissue. Hypertension 6: 383–390PubMedCrossRefGoogle Scholar
  69. 69.
    Sakaguchi K, Chai SY, Jackson B, Johnston CI, Mendelsohn FA (1988) Inhibition of tissue angiotensin converting enzyme. Quantitation by autoradiography. Hypertension 11: 230–238Google Scholar
  70. 70.
    Schunkert H, Dzau VJ, Tang SS, Hirsch AT, Apstein CS, Lorell BH (1990) Increased rat cardiac angiotensin converting enzyme activity and mRNA expression in pressure overload left ventricular hypertrophy: effects on coronary resistance, contractility, and relaxation. J Clin Invest 86: 1913–1920PubMedCrossRefGoogle Scholar
  71. 71.
    Skidgel RA, Defendini R, Erdos EG (1988) Angiotensin I converting enzyme and its role in neuropeptide metabolism. In: Turner AJ (ed) Neuropeptides and their peptidases; Ellis Horwood VCH, pp 165–188Google Scholar
  72. 72.
    The SOLVD Investigators (1992) Effect of enalapril on mortality and the development of heart failure in asymptomatic patients with reduced left ventricular ejection fractions. N Engl J Med 327: 685–691Google Scholar
  73. 73.
    Taubman MB, Berk BC, Izumo S, Tsuda T, Alexander RW, Nadal-Ginard B (1989) Angiotensin II induces c-fos mRNA in aortic smooth muscle. Role of Ca++ mobilization and protein kinase C activation. J Biol Chem 264: 526–530Google Scholar
  74. 74.
    Urata H, Healey B, Stewart RW, Bumpus FM, Husain A (1989) Angiotensin II receptors in normal and failing human hearts. J Clin Endocrinol Metab 69: 54–66PubMedCrossRefGoogle Scholar
  75. 75.
    Urata H, Healey B, Stewart RW, Bumpus FM, Husain A (1990) Angiotensin II-forming pathways in normal and failing human hearts. Circ Res 66: 883–890PubMedCrossRefGoogle Scholar
  76. 76.
    Vlodaysky I, Folkman J, Sullivan R, Fridman R, Ishai-Michaeli R, Sasse J, Klagsbrun M (1987) Endothelial cell-derived basic fibroblast growth factor: Synthesis and deposition into subendothelial extracellular matrix. Proc Natl Acad Sci USA 84: 2292–2296Google Scholar
  77. 77.
    Webb RC, Finta KM, Fisher M, Lee L, Pitt B (1992) Ramipril reverses impaired endothelium-dependent relaxation in arteries from rabbits fed an atherogenic diet. The FASEB Journal 6(No. 5: Part I ): Abstract 3022Google Scholar
  78. 78.
    Weber KT, Brilla CG, Janicki JS, Reddy HK (1991) Myocardial fibrosis: role of ventricular systolic pressure, arterial hypertension, and circulation hormones. Basic Res Cardiol 86 (suppl 3): 25–31PubMedGoogle Scholar
  79. 79.
    Yamada H, Fabris B, Allen AM, Jackson B, Johnson CI, Mendelsohn FAO (1991) Localisation of angiotensin converting enzyme in the rat heart. Circ Res 68: 141–149PubMedCrossRefGoogle Scholar
  80. 80.
    Xiang J, Linz W, Becker H, Ganten D, Lang RE, Schoelkens B, Unger T (1984) Effects of converting enzyme inhibitors: ramipril and enalapril on peptide action and sympathetic neurotransmission in the isolated rat heart. Eur J Pharmacol 113: 215–223CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Victor J. Dzau
    • 1
  1. 1.Division of Cardiovascular Medicine, Falk Cardiovascular Research CenterStanford University School of MedicineStanfordUSA

Personalised recommendations