Covariant Feynman Rules

  • Michael D. Scadron
Part of the Texts and Monographs in Physics book series (TMP)


In this chapter we recast the theory of nonrelativistic scattering and old-fashioned perturbation theory into relativistic, manifestly covariant language. First we reacquaint ourselves with the relativistic kinematics of two-and three-body decays and two-body scattering processes. Next we reformulate the general dynamical scattering problem in terms of a covariant S-matrix and develop general formulae for decay rates and scattering cross sections. Then after examining the composition of covariant interactions and Feynman propagators, we enumerate a set of Feynman rules from which dynamical S-matrix elements can be constructed.




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. R. P. Feynman: Phys. Rev. 76, 749, 769 (1949)MathSciNetADSMATHCrossRefGoogle Scholar
  2. Feynman, R. P. Quantum Electrodynamics. New York: Benjamin, 1961a.Google Scholar
  3. Feynman, R. P. Theory of Fundamental Processes. New York: Benjamin, 1961b.Google Scholar
  4. Mandl, F. Introduction to Quantum Field Theory. New York: Interscience, 1959.Google Scholar
  5. Schweber, S. S. An Introduction to Relativistic Quantum Theory. Evanston, Ill.: Row, Peterson, 1961.Google Scholar
  6. Bjorken, J. D., and Drell, S. D. Relativistic Quantum Mechanics. New York: McGraw-Hill, 1964.Google Scholar
  7. Muirhead, H. The Physics of Elementary Particles. Oxford: Pergamon, 1965.Google Scholar
  8. Sakurai, J. J. Advanced Quantum Mechanics. Reading, Mass.: Addison-Wesley, 1967a.Google Scholar
  9. Berestetskii, V. B., Lifshitz, E. M., and Pitaevskii, L. P. Relativistic Quantum Theory Part 1. Oxford: Pergamon, 1971.Google Scholar
  10. Jauch, J. M., and Rohrlich, F. The Theory of Photons and Electrons. 2nd ed. Berlin: Springer-Verlag, 1976.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1979

Authors and Affiliations

  • Michael D. Scadron
    • 1
  1. 1.Department of PhysicsUniversity of ArizonaTucsonUSA

Personalised recommendations