Advertisement

Abstract

The fundamentals of nonrelativistic quantum mechanics will be summarized to lay a foundation for understanding more advanced concepts in relativistic quantum mechanics and scattering theory. Dirac’s elegant notation is used to highlight the orthogonality and completeness properties of eigenstates of physical observables and to stress the importance of transformation theory through the use of Dirac transformation coefficients and unitary operators. The Schrödinger equation is embedded in a unitary time translation operator, and the Schrödinger, Heisenberg, and Dirac-interaction pictures are reviewed. Notation conventions and units are also discussed in this introductory chapter.

Keywords

Unitary Operator Unitary Transformation Infinitesimal Generator Interaction Picture Relativistic Quantum Mechanic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Pauli: Handbuch der Physik 24, 1 (1933)Google Scholar
  2. Ludwig, G. Die Grundlagen der Quantenmechanik. Berlin: Springer-Verlag, 1954.Google Scholar
  3. Kramers, H. A. Quantum Mechanics. Amsterdam: North-Holland, 1957.MATHGoogle Scholar
  4. Mandl, F. Quantum Mechanics. 2nd ed. London: Butterworths, 1957.Google Scholar
  5. Dirac, P. A. M. The Principles of Quantum Mechanics. 4th ed. London: Oxford U.P., 1958.MATHGoogle Scholar
  6. Landau, L. D., and Lifshitz, E. M. Quantum Mechanics. Reading, Mass.: Addison-Wesley, 1958.MATHGoogle Scholar
  7. Messiah, A. Quantum Mechanics. Amsterdam: North-Holland, 1962.Google Scholar
  8. R. P. Feynman: Phys. Rev. Lett. 23, 1415 (1969)ADSCrossRefGoogle Scholar
  9. Gottfried,K. Quantum Mechanics. New York: Benjamin, 1966.Google Scholar
  10. Tomonaga, S. I. Quantum Mechanics. Amsterdam: North-Holland, 1966.MATHGoogle Scholar
  11. Matthews, P. T. Introduction to Quantum Mechanics. London: McGraw-Hill, 1968.Google Scholar
  12. Schiff, L. I. Quantum Mechanics. 3rd ed. New York: McGraw-Hill, 1968.Google Scholar
  13. Merzbacher, E. Quantum Mechanics. 2nd ed. New York: Wiley, 1970.Google Scholar
  14. Gasiorowicz, S. Quantum Physics. New York: Wiley, 1974.Google Scholar
  15. Mathews, P. M., and Venkatesan, K. A Textbook of Quantum Mechanics. New Delhi: Tata McGraw-Hill, 1976.Google Scholar

Copyright information

© Springer Science+Business Media New York 1979

Authors and Affiliations

  • Michael D. Scadron
    • 1
  1. 1.Department of PhysicsUniversity of ArizonaTucsonUSA

Personalised recommendations