Skip to main content

Pain and Myocardial Ischemia: the Role of Sympathetic Activation

  • Conference paper
Adrenergic Mechanisms in Myocardial Ischemia

Summary

In a first series, we tested whether the relative ischemia distal to a severe stenosis on the left circumflex coronary (CX) artery increases the activity of cardiac sympathetic (CS) nerves which, in turn, may result in a poststenotic vasoconstriction and an aggravation of ischemia. In 23 anesthetized, vagotomized dogs, an acute stenosis that reduced CX blood flow to 50% of control was produced and maintained for 20 min. The activity of postganglionic CS nerves increased by 23 ± 4% within 20 min. In parallel, poststenotic coronary resistance increased from 0.48 ± 0.03 (SEM) to 0.61 ± 0.03 mm Hg·min·100 g/ml, resulting in a net lactate production after 15 min. The selective ±2-adrenoceptor antagonist rauwolscine (0.2 mg/kg i.V.; n = 6) and the calcium antagonist nifedipine (10μg/kg i.V.; n = 6) prevented the progressive increase in poststenotic resistance and the net lactate production, but still permitted an increase in CS activity. Segmental anesthesia of CS nerves with epidural infiltration of procaine at segments C7-T6 (n = 6) prevented the sympathetic activation, the progressive increase in poststenotic resistance and the net lactate production. In six additional dogs with intact vagus nerves, CS activation and a concomitant increase in poststenotic resistance resulting in myocardial ischemia were also found. These data suggest a vicious cycle between poststenotic coronary vasoconstriction and CS activation, resulting in severe myocardial ischemia. In a second series, stimulation of high-threshold somatic afferents (= nociceptive stimulation: NCS) was used to cause reflex CS activation. The superficial peroneal nerve was electrically stimulated in 14 anesthetized, vagotomized dogs. With intact CX arteries, a 1 min stimulation resulted in a pronounced increase in CX blood flow and perfusion pressure. In contrast, NCS in the presence of a severe stenosis on the CX artery increased end-diastolic poststenotic coronary resistance by 96 ± 15% due to a reflex activation of CS nerve fibers. This activation was markedly reduced after injection of fentanyl (27 μg/kg i.V.; n = 6). Injection of naloxone (60μg/kg) restored the original effect. Systolic wall thickening (WT; sonomicrometry) in the CX artery-perfused myocardium was increased during NCS (10.9 ± 3.9 (SD) vs. 13.6 ± 5.0%) in additional five dogs with intact coronary arteries. In the presence of a stenosis on the CX artery, systolic WT was reduced to 7.0 ± 2.5% and was further decreased to 4.6 +± 2.3% during NCS. The additional deterioration of systolic regional function during NCS was prevented after i.v.-injection of fentanyl, as was the increase in poststenotic coronary resistance. The present data suggest that CS nerve activation, both by a spinal cardiocardiac reflex and by somatic afferents, increases poststenotic coronary resistance and induces or aggravates myocardial ischemia distal to coronary stenoses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Deussen A, Heusch G (1983) Reflektorische Vasokonstriktion hochgradig stenosierter Koronararterien bei Karotisokklusion. Z Kardiol 72 Suppl 2:28 (abstr.)

    Google Scholar 

  2. Felder RB, Thames MD (1981) The cardiocardiac sympathetic reflex during coronary occlusion in anesthetized dogs. Circ Res 48, 685–692

    Article  PubMed  CAS  Google Scholar 

  3. Foreman RD, Blair RW (1988) Central organization of sympathetic cardiovascular response to pain. Ann Rev Physiol 50, 607–622

    Article  CAS  Google Scholar 

  4. Gallagher KP, Matsuzaki M, Osakada G, Kemper WS, Ross Jr J (1983) Effect of exercise on the relationship between myocardial blood flow and systolic wall thickening in dogs with acute coronary stenosis. Circ Res 52, 716–729

    Article  PubMed  CAS  Google Scholar 

  5. Gould KL, Lipscomb K, Calvert C (1975) Compensatory changes of the distal coronary vascular bed during progressive coronary constriction. Circulation 51, 1085–1094

    Article  PubMed  CAS  Google Scholar 

  6. Gwirtz PA, Franklin D, Mass HJ (1986) Modulation of synchrony of left ventricular contraction by regional adrenergic stimulation in conscious dogs. Am J Physiol 251, 490–495

    Google Scholar 

  7. Heusch G (1985) Sympathische Herznerven und Myokardischämie. Tierexperimentelle Untersuchungen, Thieme, Stuttgart

    Google Scholar 

  8. Heusch G, Deussen A (1983) The effects of cardiac sympathetic nerve stimulation on the perfusion of stenotic coronary arteries in the dog. Circ Res 53, 8–15

    Article  PubMed  CAS  Google Scholar 

  9. Heusch G, Deussen A (1984) Nifedipine prevents sympathetic vasoconstriction distal to severe coronary stenoses. J Cardiovasc Pharmacol 6, 378–383

    Article  PubMed  CAS  Google Scholar 

  10. Heusch G, Deussen A, Thämer V (1985) Cardiac sympathetic nerve activity and progressive vasoconstriction distal to coronary stenoses: feedback aggravation of myocardial ischemia. J Auton Nerv Syst 13, 311–326

    Article  PubMed  CAS  Google Scholar 

  11. Heusch G, Guth BD, Widmann T, Peterson KL, Ross J Jr (1987) Ischemic myocardial dysfunction assessed by temporal Fourier transform of regional myocardial wall thickening. Am Heart J 113, 116–124

    Article  PubMed  CAS  Google Scholar 

  12. Heusch G, Thämer V (1984) Die Bedeutung des sympathischen Nervensystems für die Koronardurch-blutung. Z Kardiol 73, 543–551

    PubMed  CAS  Google Scholar 

  13. Horeyseck G, Jänig W, Kirchner F, Thämer V (1976) Activation and inhibition of muscle and cutaneous postganglionic neurons to hind limbs during hypothalamically induced vasoconstriction and atropine-sensitive vasodilation. Pflügers Arch 361, 231–240

    Article  PubMed  CAS  Google Scholar 

  14. Kröger K, Schipke J, Thämer V, Heusch G (1989) Poststenotic ischemic myocardial dysfunction induced by peripheral nociceptive stimulation. Eur Heart J 10 Suppl F, 179–182

    Article  PubMed  Google Scholar 

  15. Lombardi F, Casalone C, Della Bella P, Malfatto G, Pagani M, Malliani A (1984) Global versus regional myocardial ischemia: differences in cardiovascular and sympathetic responses in cats. Cardiovasc Res 18, 14–23

    Article  PubMed  CAS  Google Scholar 

  16. Malliani A (1986) The elusive link between transient myocardial ischemia and pain. Circulation 73, 201–204

    Article  PubMed  CAS  Google Scholar 

  17. Malliani A, Schwartz PJ, Zanchetti A (1969) A sympathetic reflex elicited by experimental coronary occlusion. Am J Physiol 217, 703–709

    PubMed  CAS  Google Scholar 

  18. Randich A, Maixner W (1984) Interactions between cardiovascular and pain regulatory systems. Neurosc Biobehav Rev 8, 343–367

    Article  CAS  Google Scholar 

  19. Thames MD, Klopfenstein HS, Abboud FM, Mark AL, Walker JL (1978) Preferential distribution of inhibitory cardiac receptors with vagai afferents to the inferoposterior wall of the left ventricle activated during coronary occlusion in the dog. Circ Res 43, 512–519

    Article  PubMed  CAS  Google Scholar 

  20. Theroux P, Ross J Jr, Franklin D, Kemper WS, Sasayama S (1976) Regional myocardial function in the conscious dog during acute coronary occlusion and response to morphine, Propranolol, nitroglycerin and lidocaine. Circulation 53, 302–314

    Article  PubMed  CAS  Google Scholar 

  21. Tölle T, Schipke JD, Schulz R, Thämer V, Haase J (1986) Nociceptive activation of cardiac sympathetic nerves induces poststenotic coronary vasoconstriction. Pflügers Arch 406 suppl: R43 (abstr.)

    Google Scholar 

  22. Uchida Y, Murao S (1974) Excitation of afferent cardiac sympathetic nerve fibers during coronary occlusion. Am J Physiol 226, 1094–1099

    PubMed  CAS  Google Scholar 

  23. Vogt A, Thämer V (1980) Vagai and sympathetic reflexes of left ventricular origin on the efferent activity of cardiac and renal nerves on anaesthetized cats. Basic Res Cardiol 75, 635–645

    Article  PubMed  CAS  Google Scholar 

  24. Webb SW, Adgey AAJ, Pantridge JF (1972) Autonomic disturbance at onset of acute myocardial infarction. Br Med J 3, 89–92

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Gerd Heusch John Ross Jr.

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Thämer, V., Deussen, A., Schipke, J.D., Tölle, T., Heusch, G. (1991). Pain and Myocardial Ischemia: the Role of Sympathetic Activation. In: Heusch, G., Ross, J. (eds) Adrenergic Mechanisms in Myocardial Ischemia. Steinkopff, Heidelberg. https://doi.org/10.1007/978-3-662-11038-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-11038-6_21

  • Publisher Name: Steinkopff, Heidelberg

  • Print ISBN: 978-3-662-11040-9

  • Online ISBN: 978-3-662-11038-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics