Skip to main content

Cardiac Sympathetic Activity in Myocardial Ischemia: Release and Effects of Noradrenaline

  • Conference paper
Adrenergic Mechanisms in Myocardial Ischemia

Summary

Sympathetic overactivity in myocardial ischemia is closely associated with the progression of myocyte injury and the incidence of malignant arrhythmias. Adrenergic stimulation of the ischemic myocardium is predominantly due to increased local noradrenaline concentrations in the heart, whereas plasma catecholamine levels are of minor relevance. During the first few minutes of ischemia, efferent sympathetic nerves are activated. Excessive accumulation of noradrenaline, however, is prevented since adenosine, formed in the ischemic myocardium, suppresses exocytotic noradrenaline release, and released noradrenaline is rapidly removed as long as catecholamine reuptake is functional.

With progression of ischemia to more than 10min, the myocardium is no longer protected against excess catecholamine accumulation in the interstitial space, since local metabolic release mechanisms become increasingly important. This release, which is independent of central sympathetic activity and from extracellular calcium, occurs in two steps: First, noradrenaline escapes from its intracellular storage vesicles and accumulates in the cytoplasm of the neuron. In a second, rate-limiting step, noradrenaline is transported across the plasma membrane into the interstitial space, using the neuronal uptake carrier in reverse of its normal transport direction. As a consequence of local metabolic catecholamine release, extracellular noradrenaline reaches 1000 times the normal plasma concentration within 20min of ischemia.

Studies using acute and chronic sympathetic denervation and antiadrenergic agents demonstrate that local metabolic, rather than centrally induced noradrenaline release is critically involved in the progression of ischemie cell damage within the occurrence of ventricular fibrillation in early ischemia.

Myocardial ischemia results in a temporary supersensitivity of the myocytes to catecholamines. This is due to a twofold increase of α1- and a 30% increase of β-adrenergic receptor number at the cell surface. The sensitization of adenylate cyclase during the first 20 min of total ischemia is followed by a rapid inactivation of the enzyme. The β-adrenergic hyperresponsiveness to catecholamines is therefore limited to the first few minutes of ischemia.

The deleterious combination of extremely high noradrenaline concentrations with a temporarily enhanced responsiveness to catecholamines of the tissue is thought to accelerate the propagation of the wavefront of irreversible cell damage within the ischemie myocardium. Moreover, the inhomogenous distribution of catecholamine excess within the heart is considered to promote malignant arrhythmias by unmasking and enhancing electrophysiological disturbances in early ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrahamsson T, Almgren O, Svensson L (1981) Local noradrenaline release in acute myocardial ischemia: Influence of catecholamine synthesis inhibition and β-adrenoceptor blockade on ischemic injury. J Cardiovasc Pharmacol 3, 807–817

    Article  PubMed  CAS  Google Scholar 

  2. Abrahamsson T, Almgren O, Carlsson L (1983) Ischemia-induced noradrenaline release in the isolated rat heart: Influence of perfusion, substrate, and duration of ischemia. J Mol Cell Cardiol 15, 821–830

    Article  PubMed  CAS  Google Scholar 

  3. Aronson PS (1985) Kinetic properties of the plasma membrane Na+-H+exchanger. Ann Rev Physiol 47, 545–560

    Article  CAS  Google Scholar 

  4. Baischi JA, Frazer JC, Fetters JK, Clarke K, Springer CS, Smith TW, Ingwall JS (1985) Shift reagent and Na-23 nuclear magnetic resonance discriminates between extra-and intracellular sodium pools in ischemic heart. Circulation 72(suppl III): 355 (abstr.)

    Google Scholar 

  5. Barber MJ, Thomas JX, Stephen JR, Jones B, Randall WC (1982) Effect of sympathetic nerve stimulation and cardiac denervation on MBF during LAD occlusion. Am J Physiol 243, H556–H574

    Google Scholar 

  6. Beers MF, Carty SE, Johnson RG, Scarpa A (1982) H+-ATPase and catecholamine transport in chromaffin granules. Ann NY Acad Sci 402, 116–133

    Article  PubMed  CAS  Google Scholar 

  7. Benedict CR, Graham-Smith DG (1979) Plasma adrenaline and noradrenaline concentrations and dopamine-β-hydroxylase activity in myocardial infarction with and without cardiogenic shock. Br Heart J 42, 214–220

    Article  PubMed  CAS  Google Scholar 

  8. Bernauer W (1985) The effect of β-adrenoceptor blocking agents on evolving myocardial necrosis in coronary ligated rats with and without reperfusion. Naunyn-Schmiedeberg’s Arch Pharmacol 328, 288–294

    Article  CAS  Google Scholar 

  9. Bertel O, Bühler FR, Baitsch G, Ritz R, Burkart F (1982) Plasma adrenaline and noradrenaline in patients with acute myocardial infarction. Relationship to ventricular arrhythmias of varying severity. Chest 82, 64–68

    Article  PubMed  CAS  Google Scholar 

  10. Carlsson L, Abrahamsson T, Almgren O (1985) Local release of myocardial norepinephrine during acute ischemia: An experimental study in the isolated perfused rat heart. J Cardiovasc Pharmacol 7, 791–798

    Article  PubMed  CAS  Google Scholar 

  11. Carlsson L (1988) A crucial role of ongoing anaerobic glycolysis in attenuating acute ischemia-induced release of myocardial noradrenaline. J Mol Cell Cardiol 20, 247–253

    Article  PubMed  CAS  Google Scholar 

  12. The Cardiac Arrhythmia Suppression Trial (CAST) Investigators (1989) Preliminary report: Effect of encainide and flecainide on mortality in a randomized trial of arrhythmia suppression after myocardial infarction. N Engl J Med 321, 406–412

    Article  Google Scholar 

  13. Coronel R, Fiolet JWT, Wilms-Schopman FJG, Schaapherder AFM, Johnson TA, Gettes LS, Janse MJ (1988) Distribution of extracellular potassium and its relation to electrophysiologic changes during acute myocardial ischemia in isolated perfused porcine heart. Circulation 77, 1125–1138

    Article  PubMed  CAS  Google Scholar 

  14. Corr PB, Crafford WA (1981) Enhanced alpha-adrenergic responsiveness in the myocardium: Role of alpha adrenergic blockade. Am Heart J 102, 605–614

    Article  PubMed  CAS  Google Scholar 

  15. Corr PB, Gillis RA (1978) Autonomic neural influences on the dysrhythmias resulting from myocardial infarction. Circ Res 43, 1–9

    Article  PubMed  CAS  Google Scholar 

  16. Corr PB, Shayman JA, Kramer JB, Kipnis RJ (1981) Increased α-adrenergic receptors in ischemic cat myocardium. J Clin Invest 67, 1232–1236

    Article  PubMed  CAS  Google Scholar 

  17. Corr PB, Witkowski FX, Sobel BE (1978) Mechanisms contributing to malignant dysrhythmias induced by ischemia in the cat. J Clin Invest 61, 109–119

    Article  PubMed  CAS  Google Scholar 

  18. Corr PB, Yamada KA, Witkowski FX (1986) Mechanisms controlling cardiac autonomie function and their relation to arrhythmogenesis. In: Fozzard HA, Jennings RB, Haber E, Katz AM, Morgan HE (Eds), Heart and Cardiovascular System. Raven Press, New York, pp 1343–1403

    Google Scholar 

  19. Cox WV, Robertson HF (1936) The effect of stellate ganglionectomy on the cardiac function of intact dogs and its effect on the extent of myocardial infarction and on cardiac function following coronary artery occlusion. Am Heart J 12, 285–300

    Article  Google Scholar 

  20. Cruickshank JM, Prichand BN (1987) Beta-blockers in clinical practice. Churchill Livingstone, Edinburgh, London, Melbourne and New York.

    Google Scholar 

  21. Culling W, Penny WJ, Lewis MJ, Middleton K, Sheridan DJ (1984) Effects of myocardial catecholamine depletion on cellular electrophysiology and arrhythmias during ischaemia and reperfusion. Cardiovasc Res 18, 675–682

    Article  PubMed  CAS  Google Scholar 

  22. Dart AM (1988) Influence of myocardial ischaemia on exocytotic noradrenaline release. In: Brachmann J, Schömig A (Eds) Adrenergic System and Ventricular Arrhythmias in Myocardial Infarction. Springer Verlag, New York-Berlin-Heidelberg, pp 34–43

    Google Scholar 

  23. Dart AM, Riemersma RA (1988) Origins of endogenous noradrenaline overflow during reperfusion of the ischaemic rat heart. Clin Sci 74, 269–274

    PubMed  CAS  Google Scholar 

  24. Dart AM, Riemersma RA, Schömig A, Ungar A (1987) Metabolic requirements for release of endogenous noradrenaline during myocardial ischaemia and anoxia. Br J Pharmacol 90, 43–50

    Article  PubMed  CAS  Google Scholar 

  25. Dart AM, Schömig A, Dietz R, Mayer E, Kübier W (1984) Release of endogenous catecholamines in the ischemie myocardium of the rat. Part B: Effect of sympathetic nerve stimulation. Circ Res 55, 702–706

    Article  PubMed  CAS  Google Scholar 

  26. Daugherty A, Frayn KN, Redfern WS, Woodward B (1986) The role of catecholamines in the production of ischaemia-induced ventricular arrhythmias in the rat in vivo and in vitro. Br J Pharmacol 87, 265–277

    Article  PubMed  CAS  Google Scholar 

  27. Dietz R, Offner B, Dart AM, Schömig A (1989) Ischaemia-induced noradrenaline release mediates ventricular arrhythmias. In: Brachmann J, Schömig A (Eds) Adrenergic System and Ventricular Arrhythmias in Myocardial Infarction. Springer Verlag, Berlin-Heidelberg-New York, pp 313–321

    Chapter  Google Scholar 

  28. Du XJ, Riemersma RA (1990) Reduced neuronal noradrenaline overflow in the innervated ischaemic rat heart: Importance of the severity of coronary flow reduction. Basic Res Cardiol (in press)

    Google Scholar 

  29. Duff HJ, Lester WM, Rahmberg M (1988) Amiloride. Antiarrhythmic and electrophysiological activity in the dog. Circulation 78, 1469–1477

    Article  PubMed  CAS  Google Scholar 

  30. Duff HJ, Mitchell LB, Kavanagh KM, Manyari DE, Gillis AM, Wyse DG (1989) Amiloride. Antiarrhythmic and electrophysiologic actions in patients with inducible sustained ventricular tachycardia. Circulation 79, 1257–1263

    Article  PubMed  CAS  Google Scholar 

  31. Ebert PA, Vanderbeek RB, Allgood RJ, Sabiston Jr DC (1970) Effect of chronic cardiac denervation on arrhythmias after coronary artery ligation. Cardiovasc Res 4, 141–147

    Article  PubMed  CAS  Google Scholar 

  32. Edoute Y, Sanan D, Lochner A, Graney D, Kotze JCN (1981) Effects of Propranolol on myocardial ultrastructure, mitochondrial function and high energy phosphates of isolated working rat hearts with coronary artery ligation. J Mol Cell Cardiol 13, 619–639

    Article  PubMed  CAS  Google Scholar 

  33. Ellingsen O, Sejersted OM, Leraand S, Ilebekk A (1987) Catecholamine-induced myocardial potassium uptake mediated by β1-adrenoceptors and adenylate cyclase activation in the pig. Circ Res 60, 540–550

    Article  PubMed  CAS  Google Scholar 

  34. Ellis SG, Henschke Cl, Sandor T, Wynne J, Braunwald E, Kloner RA (1983) Time course of functional and biochemical recovery of myocardium salvaged by reperfusion. J Am Coll Cardiol 1, 1047–1055

    Article  PubMed  CAS  Google Scholar 

  35. Emanuelsson H, Mannheimer C, Waagstein F (1990) Changes in arterial levels and myocardial metabolism of catecholamines during pacing-induced angina pectoris. Clin Cardiol (in press)

    Google Scholar 

  36. Esler M, Jennings G, Korner P, Blombery P, Sacharias N, Leonard P (1984) Measurement of total and organ-specific norepinephrine kinetics in humans. Am J Physiol 247, E21–E28

    PubMed  CAS  Google Scholar 

  37. Euler von US, Lishajko F (1963) Effect of adenine nucleotides on catecholamine release and uptake in isolated adrenergic nerve granules. Acta Physiol Scand 59, 454–461

    Article  CAS  Google Scholar 

  38. Fearon RE (1967) Propranolol in the prevention of ventricular fibrillation due to experimental coronary artery occlusion. Am J Cardiol 20, 222–228

    Article  PubMed  CAS  Google Scholar 

  39. Fiolet JWT, Baartscheer A, Schumacher CA, Coronel R, ter Welle HF (1984) The change of the free energy of ATP hydrolysis during global ischemia and anoxia in the rat heart. Its possible role in the regulation of transsarcolemmal sodium and potassium gradients. J Mol Cell Cardiol 16, 1023–1036

    Article  PubMed  CAS  Google Scholar 

  40. Forfar JC, Riemersma RA, Oliver MF (1983) Alpha-adrenoceptor control of norepinephrine release from acutely ischemic myocardium: Effects of blood flow, arrhythmias, and regional conduction delay. J Cardiovasc Pharmacol 5, 752–759

    Article  PubMed  CAS  Google Scholar 

  41. Fowler CJ, Oreland L (1980) The nature of the substrate-selective interaction between rat liver mitochondrial monoamine oxidase and oxygen. Biochem Pharmacol 29, 2225–2233

    Article  PubMed  CAS  Google Scholar 

  42. Franco-Cereceda A, Saria A, Lundberg JM (1989) Differential release of calcitonin gene-related peptide and neuropeptide Y from the isolated heart by capsaicin, ischaemia, nicotine, bradykinin and ouabain. Acta Physiol Scand 135, 173–187

    Article  PubMed  CAS  Google Scholar 

  43. Gazes PC, Richardson JA, Woods EF (1959) Plasma catecholamine concentrations in myocardial infarction and angina pectoris. Circulation 19, 657–661

    Article  PubMed  CAS  Google Scholar 

  44. Graefe KH (1989) On the mechanism of non-exocytotic release of noradrenaline from noradrenergic neurons. In: Brachmann J, Schömig A (Eds) Adrenergic System and Ventricular Arrhythmias in Myocardial Infarction. Springer Verlag, New York-Berlin-Heidelberg, pp 44–52

    Chapter  Google Scholar 

  45. Graefe KH, Fuchs G (1979) On the mechanism of neuronal efflux of axoplasmatic 3H-(-)noradrenaline. In: Usdin E, Kopin IJ, Barchas J (Eds) Catecholamines: Basic and Clinical Frontiers. Vol 1, Pergamon Press, New York, Oxford, Toronto, Sydney, Frankfurt, Paris, pp 268–270

    Google Scholar 

  46. Graefe KH, Zeitner CJ, Fuchs G, Keller B (1984) Role played by sodium in the membrane transport of 3H-noradrenaline across the axonal membrane of noradrenergic neurones. In: Fleming WW (Ed) Neuronal and Extraneuronal Events in Autonomic Pharmacology. Raven Press, New York, pp 51–62

    Google Scholar 

  47. Griffiths J, Leung F (1971) The sequential estimation of plasma catecholamines and whole blood histamine in myocardial infarction. Am Heart J 82, 171–179

    Article  PubMed  CAS  Google Scholar 

  48. Haass M, Cheng B, Richardt G, Lang RE, Schömig A (1989) Characterization and presynaptic modulation of stimulation-evoked exocytotic co-release of noradrenaline and neuropeptide Y in guinea pig heart. Naunyn-Schmiedeberg’s Arch Pharmacol 339, 71–78

    CAS  Google Scholar 

  49. Haass M, Hock M, Richardt G, Schömig A (1989) Neuropeptide Y differentiates between exocytotic and nonexocytotic noradrenaline release in guinea-pig heart. Naunyn-Schmiedeberg’s Arch Pharmacol 340, 509–515

    CAS  Google Scholar 

  50. Haass M, Richardt G, Lang RE, Schömig A (1990) Common features of NPY and noradrenaline release in guinea pig heart. Ann N Y Acad Sci USA (in press)

    Google Scholar 

  51. Heusch G, Deussen A (1983) The effects of cardiac sympathetic nerve stimulation on perfusion of stenotic coronary arteries in the dog. Circ Res 53, 8–15

    Article  PubMed  CAS  Google Scholar 

  52. Hirche HJ, Franz C, Bös L, Bissig R, Lang R, Schramm M (1980) Myocardial extracellular K+ and H+ increase and noradrenaline release as possible cause of early arrhythmias following acute coronary artery occlusion in pigs. J Mol Cell Cardiol 12, 579–593

    Article  PubMed  CAS  Google Scholar 

  53. Holmgren S, Abrahamsson T, Almgren O (1985) Adrenergic innervation of coronary arteries and ventricular myocardium in the pig: Fluorescence microscopic appearance in the normal state and after ischemia. Basic Res Cardiol 80, 18–26

    Article  PubMed  CAS  Google Scholar 

  54. Holmgren S, Abrahamsson T, Almgren O, Eriksson BM (1981) Effect of ischaemia on the adrenergic neurons of the rat heart: A fluorescence histochemical and biochemical study. Cardiovasc Res 15, 680–689

    Article  PubMed  CAS  Google Scholar 

  55. Humprey SM, Gavin JB, Herdson PB (1982) Catecholamine-depletion and the no-reflow phenomenon in anoxic and ischaemic rat hearts. J Mol Cell Cardiol 14, 151–161

    Article  Google Scholar 

  56. Insel PA, Maisel AS (1989) Alpha1-and beta-adrenergic receptors in myocardial ischemia and injury. In: Brachmann J, Schömig A (Eds) Adrenergic System and Ventricular Arrhythmias in Myocardial Infarction. Springer Verlag, New York-Berlin-Heidelberg, pp 81–90

    Chapter  Google Scholar 

  57. ISIS-1 Collaborative Group (First International Study of Infarct Survival) (1986) Randomized trial of intravenous atenolol among 16027 cases of suspected acute myocardial infarction: ISIS-I. Lancet 2, 57–66.

    Google Scholar 

  58. ISIS-1 (First International Study of Infarct Survival) Collaborative Group (1988) Mechanisms for the early mortality reduction produced by beta-blockade started early in acute myocardial infarction: ISIS-1. Lancet 1, 921–923

    Google Scholar 

  59. Janse MJ (1989) Why is increased adrenergic activity arrhythmogenic? In: Brachmann J, Schömig A (Eds) Ventricular Arrhythmias in Myocardial Infarction. Springer Verlag, New York-Berlin-Heidelberg, pp 353–363

    Chapter  Google Scholar 

  60. Janse MJ, Cinca J, Morena H, Fiolet JWT, Kleber AG, de Vries GP, Beckert AE, Durrer D (1979) The border zone in myocardial ischemia. An electrophysiological, metabolic and histological correlation in the pig heart. Circ Res 44, 576–588

    Article  PubMed  CAS  Google Scholar 

  61. Jesmok GJ, Warltier DC, Gross GJ, Harman HF (1978) Effect of Propranolol on enzymatic and histochemical estimates of infarct size in experimental myocardial infarction. Basic Res Cardiol 73, 559–570

    Article  PubMed  CAS  Google Scholar 

  62. Jones CE, Beck LY, DuPont E, Barnes GE (1978) Effect of coronary ligation on the chronically sympathectomized dog ventricle. Am J Physiol 235, H429–H434

    PubMed  CAS  Google Scholar 

  63. Karlsberg RP, Cryer PE, Roberts R (1981) Serial plasma catecholamine response early in the course of clinical acute myocardial infarction: Relationship to infarct extent and mortality. Am Heart J 102, 24–29

    Article  PubMed  CAS  Google Scholar 

  64. Karlsberg RP, Penkoske PA, Cryer PE, Corr PB, Roberts R (1979) Rapid activation of the sympathetic nervous system following coronary artery occlusion: Relationship to infarct size, site, and haemodynamic impact. Cardiovasc Res 13, 523–531

    Article  PubMed  CAS  Google Scholar 

  65. Kleber AG (1983) Extracellular potassium accumulation in acute myocardial ischemia. J Mol Cell Cardiol 16, 389–394

    Article  Google Scholar 

  66. Kopin IJ, Zukowska-Grojec Z, Bayorh MA, Goldstein DS (1984) Estimation of intrasynaptic norepinephrine concentrations at vascular neuroeffector junctions in vivo. Naunyn-Schmiedeberg’s Arch Pharmacol 325, 298–305

    Article  CAS  Google Scholar 

  67. Kranzhöfer R, Haass M, Kurz T, Richardt G, Schömig A (1990) Effect of digitalis glycosides on noradrenaline release in the heart: Dual mechanism of action. (submitted for publication)

    Google Scholar 

  68. Kurz Th, Said W, Saggau W, Richardt G, Schömig A (1990) Energy deficiency induces nonexocytotic release of endogenous noradrenaline in human atrial tissue. Naunyn-Schmiedeberg’s Arch Pharmacol (suppl) 341: R84 (abstr.)

    Google Scholar 

  69. Lazdunski M, Freiin C, Vigne P (1985) The sodium/hydrogen exchange system in cardiac cells: Its biochemical and pharmacological properties and its role in regulating internal concentrations of sodium and internal pH. J Mol Cell Cardiol 17, 1029–1042

    Article  PubMed  CAS  Google Scholar 

  70. Lazzara R, Marchi S (1989) Electrophysiological mechanisms for the generation of arrhythmias with adrenergic stimulation. In: Brachmann J, Schömig A (Eds) Adrenergic System and Ventricular Arrhythmias in Myocardial Infarction. Springer Verlag, New York-Berlin-Heidelberg, pp 231–238

    Chapter  Google Scholar 

  71. Leriche R, Fontaine R (1931) Les résultats actuels du traitement chirurgical de l’angine de pointrine. J Chir 38, 785–815

    Google Scholar 

  72. Lindmar R, Löffelholz K (1974) Neuronal and extraneuronal uptake and efflux of catecholamines in the isolated rabbit heart. Naunyn-Schmiedeberg’s Arch Pharmacol 284, 63–92

    Article  CAS  Google Scholar 

  73. Lorenz RR, Vanhoutte PM (1975) Inhibition of adrenergic neurotransmission in isolated veins of the dog by potassium ions. J Physiol 246, 479–500

    PubMed  CAS  Google Scholar 

  74. Louis JC, Magael E, Yavin E (1988) Proteinkinase C alterations in fetal rat brain after global ischemia. J Biol Chem 263, 19282–19285

    PubMed  CAS  Google Scholar 

  75. Maisel AS, Motulsky NJ, Insel PA (1985) Externalization of beta-adrenergic receptors promoted by myocardial ischemia. Science 230, 183–186.

    Article  PubMed  CAS  Google Scholar 

  76. Malliani A, Schwartz PJ, Zanchetti A (1969) A sympathetic reflex elicited by experimental coronary occlusion. Am J Physiol 217, 703–709

    PubMed  CAS  Google Scholar 

  77. Malliani A, Schwartz PJ, Zanchetti A (1980) Neural mechanisms in life-threatening arrhythmias. Am Heart J 100, 705–715

    Article  PubMed  CAS  Google Scholar 

  78. Martins JB, Kerber RE, Marcus ML, Laughlin DL, Levy DM (1980) Inhibition of adrenergic neurotransmission in ischaemic regions of the canine left ventricle. Cardiovasc Res 14, 116–124

    Article  PubMed  CAS  Google Scholar 

  79. McGrath BP, Lim SP, Leversha L, Shanahan A (1981) Myocardial and peripheral catecholamine responses to acute coronary artery constriction before and after Propranolol treatment in the anaesthetised dog. Cardiovasc Res 15, 28–34

    Article  PubMed  CAS  Google Scholar 

  80. Menken U, Wiegand V, Bucher P, Meesmann W (1979) Prophylaxis of ventricular fibrillation after acute experimental coronary occlusion by chronic beta-adrenoceptor blockade with atenolol. Cardiovasc Res 13, 588–594

    Article  PubMed  CAS  Google Scholar 

  81. MIAMI Trial Research Group (1985) Metoprolol in acute myocardial infarction. (MIAMI) A randomized placebo-controlled international trial. Eur Heart J 6, 199–226

    Google Scholar 

  82. Miyazaki T, Zipes DP (1990) Presynaptic modulation of efferent sympathetic and vagai neurotransmission in the canine heart by hypoxia, high K+, low pH, and adenosine. Possible relevance to ischemia-induced denervation. Circ Res 66, 289–301

    CAS  Google Scholar 

  83. Mukherjee A, McCoy KE, Duke RJ, Hogan M, Hagler HK, Buja LM, Willerson JT (1982) Relationship between beta adrenergic receptor numbers and physiological responses during experimental canine myocardial ischemia. Circ Res 50, 735–741

    Article  PubMed  CAS  Google Scholar 

  84. Muntz KH, Hagler HK, Boulas HJ, Buja LM (1984) Redistribution of catecholamines in the ischemic zone of the dog heart. Am J Pathol 114, 64–78

    PubMed  CAS  Google Scholar 

  85. Nadeau RA, de Champlain J (1979) Plasma catecholamines in acute myocardial infarction. Am Heart J 98, 548–554

    Article  PubMed  CAS  Google Scholar 

  86. Nayler WG, Sturrock WJ (1984) An inhibitory effect of Verapamil and diltiazem on the release of noradrenaline from ischaemic and reperfused hearts. J Mol Cell Cardiol 16, 331–344

    Article  PubMed  CAS  Google Scholar 

  87. Nayler WG, Sturrock WJ (1985) Inhibitory effect of calcium antagonists on the depletion of cardiac norepinephrine during postischemic reperfusion. J Cardiovasc Pharmacol 7, 581–587

    Article  PubMed  CAS  Google Scholar 

  88. Pantridge JF, Webb SW, Adgey AAJ (1981) Arrhythmias in the first hours of acute myocardial infarction. Prog Cardiovasc Dis 23, 265–278

    Article  PubMed  CAS  Google Scholar 

  89. Paton DM (1973) Mechanism of efflux of noradrenaline from adrenergic nerves in rabbit atria. Br J Pharmacol 49, 614–627

    Article  PubMed  CAS  Google Scholar 

  90. Pentecost BL, Austen WG (1966) Beta-adrenergic blockade in experimental myocardial infarction. Am Heart J 72, 790–796

    Article  PubMed  CAS  Google Scholar 

  91. Peter T, Heng MK, Singh BH, Ambler P, Nisbet H, Elliot R, Norris RM (1978) Failure of high doses of Propranolol to reduce experimental myocardial damage. Circulation 57, 534–540

    Article  PubMed  CAS  Google Scholar 

  92. Phillips JH (1982) Dynamic aspects of chromaffin granule structure. Neurosci 7, 1595–1609

    Article  CAS  Google Scholar 

  93. Podzuweit T, Darby AJ, Cherry GW, Opie LH (1978) Cyclic AMP levels in ischemic and non-ischemic myocardium following coronary artery ligation: Relation to ventricular fibrillation. J Mol Cell Cardiol 10, 81–94

    Article  PubMed  CAS  Google Scholar 

  94. Puig M, Kirpekar SM (1971) Inhibitory effects of low pH on norepinephrine release. J Pharmacol Exp Ther 176, 134–138

    PubMed  CAS  Google Scholar 

  95. Raiteri M, del Carmine R, Bertollini A, Levi G (1977) Effect of desmethylimipramine on the release of 3H-norepinephrine induced by various agents in hypothalamic synaptosomes. Mol Cell Pharmacol 13, 746–758

    CAS  Google Scholar 

  96. Reimer KA, Rasmussen MM, Jennings RB (1976) On the nature of protection by Propranolol against myocardial necrosis after temporary coronary occlusion in dogs. Am J Cardiol 37, 520–527

    Article  PubMed  CAS  Google Scholar 

  97. Richardt G, Haass M, Schömig A (1990) Calcium antagonists and cardiac noradrenaline release in ischemia. (submitted for publication)

    Google Scholar 

  98. Richardt G, Lumpp U, Haass M, Schömig A (1990) Propranolol inhibits nonexocytotic noradrenaline release in myocardial ischemia. Naunyn-Schmiedeberg’s Arch Pharmacol 341, 50–55

    CAS  Google Scholar 

  99. Richardt G, Waas W, Kranzhöfer R, Cheng B, Lohse MJ, Schömig A (1989) Interaction between the release of adenosine and noradrenaline during sympathetic stimulation: A feed-back mechanism in rat heart. J Mol Cell Cardiol 21, 269–277

    Article  PubMed  CAS  Google Scholar 

  100. Richardt G, Waas W, Kranzhöfer R, Mayer E, Schömig A (1987) Adenosine inhibits exocytotic release of endogenous noradrenaline in the rat heart: A protective mechanism in early myocardial ischemia. Circ Res 61, 117–123

    Article  PubMed  CAS  Google Scholar 

  101. Rochette L, Didier J-P, Moreau D, Brallet J (1980) Effect of substrate on release of myocardial norepinephrine and ventricular arrhythmias following reperfusion of the ischemic isolated working rat heart. J Cardiovasc Pharmacol 2, 267–279

    Article  PubMed  CAS  Google Scholar 

  102. Rona G (1985) Catecholamine cardiotoxicity. J Mol Cell Cardiol 17, 291–306

    Article  PubMed  CAS  Google Scholar 

  103. Ross SB, Kelder D (1979) Release of 3H-noradrenaline from the rat vas deferens under various in vitro conditions. Acta Physiol Scand 105, 338–349

    Article  PubMed  CAS  Google Scholar 

  104. Saffitz JE, Corr PB (1989) Mechanisms of altered adrenergic responsiveness contributing to arrhythmogenesis during myocardial ischemia. In: Brachmann J, Schömig A (Eds) Adrenergic System and Ventricular Arrhythmias in Myocardial Infarction. Springer Verlag, New York-Berlin-Heidelberg, pp 112–122

    Chapter  Google Scholar 

  105. Sammet S, Graefe KH (1979) Kinetic analysis of the interaction between noradrenaline and Na+ in neuronal uptake: Kinetic evidence for co-transport. Naunyn-Schmiedeberg’s Arch Pharmacol 309, 99–107

    Article  CAS  Google Scholar 

  106. Schaal SF, Wallace AG, Sealy WC (1969) Protective influence of cardiac denervation against arrhythmias of myocardial infarction. Cardiovasc Res 3, 241–244

    Article  PubMed  CAS  Google Scholar 

  107. Scherlag BJ, El-Sherif N, Hope RR, Lazzara R (1974) Characterization and localization of ventricular arrhythmias resulting from myocardial ischemia and infarction. Circ Res 35, 372–383

    Article  PubMed  CAS  Google Scholar 

  108. Schömig A (1988) Adrenergic mechanisms in myocardial infarction: Cardiac and systemic catecholamine release. J Cardiovasc Pharmacol 12(suppl 1): 1–7

    Article  Google Scholar 

  109. Schömig A (1989) Increase of cardiac and systemic catecholamines in myocardial ischemia. In: Brachmann J, Schömig A (Eds) Adrenergic System and Ventricular Arrhythmias in Myocardial Infarction. Springer Verlag, New York-Berlin-Heidelberg, pp 61–67

    Chapter  Google Scholar 

  110. Schömig A (1990) Catecholamines in myocardial ischemia: Systemic and cardiac release. Circulation 82 suppl II, II-13-II-22

    Google Scholar 

  111. Schömig A, Beyer Th, Rehmert G (1989) Amiloride and analogues suppress noradrenaline release and malignant arrhythmias in the ischemic rat heart. Circulation 80(suppl II): 202 (abstr.)

    Google Scholar 

  112. Schömig A, Dart AM, Dietz R, Kübier W, Mayer E (1985) Paradoxical role of neuronal uptake for the locally mediated release of endogenous noradrenaline in the ischemic myocardium. J Cardiovasc Pharmacol 7(suppl 5): S40–S44

    Article  PubMed  Google Scholar 

  113. Schömig A, Dart AM, Dietz R, Mayer E, Kübier W (1984) Release of endogenous catecholamines in the ischemic myocardium of the rat. Part A: Locally mediated release. Circ Res 55, 689–701

    Article  PubMed  Google Scholar 

  114. Schömig A, Dietz R, Strasser R, Dart AM, Kübier W (1982) Noradrenaline release and inactivation in myocardial ischemia. In: Caldarera CM, Harris P (Eds) Advances in Studies on Heart Metabolism. Bologna, CLUEB, pp 239–244

    Google Scholar 

  115. Schömig A, Fischer S, Kurz Th, Richardt G, Schömig E (1987) Nonexocytotic release of endogenous noradrenaline in the ischemie and anoxic rat heart: Mechanism and metabolic requirements. Circ Res 60, 194–295

    Article  PubMed  Google Scholar 

  116. Schömig A, Kurz Th, Richardt G, Schömig E (1988) Neuronal sodium homoeostasis and axoplasmic amine concentration determine calcium-independent noradrenaline release in normoxic and ischemie rat heart. Circ Res 63, 214–226

    Article  PubMed  Google Scholar 

  117. Schömig A, Ness G, Mayer E, Katus H, Dietz R (1984) Sympathetic activity in patients with acute myocardial infarction before and after intracoronary thrombolytic therapy. Eur Heart J 5(suppl 1): 39 (abstr.)

    Google Scholar 

  118. Schwartz PJ, Snebold NG, Brown AM (1976) Effects of unilateral cardiac sympathetic denervation on the ventricular fibrillation threshold. Am J Cardiol 37, 1034–1040

    Article  PubMed  CAS  Google Scholar 

  119. Schwartz PJ, Verrier RL, Lown B (1977) Effect of stellectomy and vagotomy on ventricular refractoriness in dogs. Circ Res 40(suppl 6): 536–540

    Article  PubMed  CAS  Google Scholar 

  120. Sethi V, Haider B, Ahmed SS, Oldewurtel HA, Regan TJ (1973) Influence of beta blockade and chemical sympathectomy on myocardial function and arrhythmias in acute ischaemia. Cardiovasc Res 7, 740–747

    Article  PubMed  CAS  Google Scholar 

  121. Shahab L, Wollenberger A, Haase M, Schiller U (1969) Noradrenalinabgabe aus dem Hundeherzen nach vorübergehender Okklusion einer Koronararterie. Acta Biol Med Germ 22, 135–143

    PubMed  CAS  Google Scholar 

  122. Sharma AD, Saffitz JE, Lee BI, Sobel BE, Corr PB (1983) Alpha adrenergic-mediated accumulation of calcium in reperfused myocardium. J Clin Invest 72, 802–818

    Article  PubMed  CAS  Google Scholar 

  123. Shatney CH, MacCarter DL, Lillehei RC (1976) Effects of allopurinol, Propranolol and methylpred-nisolone on infarct size in experimental myocardial infarction. Am J Cardiol 37, 572–580

    Article  PubMed  CAS  Google Scholar 

  124. Sheridan DJ, Penkoske PA, Sobel BE, Corr PB (1980) Alpha adrenergic contributions to dysrhythmia during myocardial ischemia and reperfusion in cats. J Clin Invest 65, 161–171

    Article  PubMed  CAS  Google Scholar 

  125. Siggers DC, Salter C, Fluck DC (1971) Serial plasma adrenaline and noradrenaline levels in myocardial infarction using a new double isotope technique. Br Heart J 33, 878–883

    Article  PubMed  CAS  Google Scholar 

  126. Sommers HM, Jennings R (1972) Ventricular fibrillation and myocardial necrosis after transient ischemia. Effect of treatment with oxygen, procainamide, reserpine, and Propranolol. Arch Intern Med 129, 780–789

    Article  PubMed  CAS  Google Scholar 

  127. Starke K (1977) Regulation of noradrenaline release by presynaptic receptor systems. Rev Physiol Biochem Pharmacol 77, 1–124

    Article  PubMed  CAS  Google Scholar 

  128. Stewart JR, Burmeister WE, Burmeister J, Lucchesi BR (1980) Electrophysiologic and antiarrhythmic effects of phentolamine in experimental coronary artery occlusion and reperfusion in the dog. J Cardiovasc Pharmacol 2, 77–91

    Article  PubMed  CAS  Google Scholar 

  129. Strange RC, Rowe MJ, Oliver MF (1978) Lack of relation between venous plasma total catecholamine concentration and ventricular arrhythmias after acute myocardial infarction. Br Med J 2, 921–922

    Article  PubMed  CAS  Google Scholar 

  130. Strasser RH, Dullaeus B, Marquetant R (1990) β-Receptor independent sensitization of the adenylylcyclase system in acute myocardial ischemia, Br J Pharmacol (in press)

    Google Scholar 

  131. Strasser RH, Krimmer J, Marquetant R (1988) Regulation of β-adrenergic receptors: Impaired desensitization in myocardial ischemia. J Cardiovasc Pharmacol 12(suppl 1): S15–S24

    Article  PubMed  CAS  Google Scholar 

  132. Strasser RH, Marquetant R, Kübier W (1989) Sensitization of the adrenergic system in early myocardial ischemia: Independent regulation of β-adrenergic receptors and adenylate cyclase. In: Brachmann J, Schömig A (Eds) Adrenergic System and Ventricular Arrhythmias in Myocardial Infarction, Springer Verlag, New York-Berlin-Heidelberg, pp 98–111

    Chapter  Google Scholar 

  133. Stute N, Trendelenburg U (1984) The outward transport of axoplasmic noradrenaline induced by a rise of the sodium concentration in the adrenergic nerve endings of the rat vas deferens. Naunyn-Schmiedeberg’s Arch Pharmacol 327, 124–132

    Article  CAS  Google Scholar 

  134. Thames MD, Klopfenstein HS, Abboud FM, Mark AL, Walker JL (1978) Preferential distribution of inhibitory cardiac receptors with vagai afferents to the inferoposterior wall of the left ventricle activated during coronary occlusion in the dog. Circ Res 43, 512–519

    Article  PubMed  CAS  Google Scholar 

  135. Toll L, Howard BD (1978) Role of Mg2+-ATPase and a pH gradient in the storage of catecholamines in synaptic vesicles. Biochemistry 17, 2517–2523

    Article  PubMed  CAS  Google Scholar 

  136. Trendelenburg U (1989) The dynamics of adrenergic nerve endings. In: Brachmann J, Schömig A (Eds) Adrenergic System and Ventricular Arrhythmias in Myocardial Infarction, Springer Verlag, New York-Berlin-Heidelberg, pp 53–60

    Chapter  Google Scholar 

  137. Uchida Y, Murao S (1974) Excitation of afferent cardiac sympathetic nerve fibers during coronary occlusion. Am J Physiol 226, 1094–1099

    PubMed  CAS  Google Scholar 

  138. van Vliet PD, Burchell HB, Titus JF (1966) Focal myocarditis associated with pheochromocytoma. N Engl J Med 274, 1102–1108

    Article  PubMed  Google Scholar 

  139. Vatner DE (1989) Uncoupling of the β-adrenergic receptor by myocardial ischemia. In: Brachmann J, Schömig A (Eds) Adrenergic System and Ventricular Arrhythmias in Myocardial Infarction. Springer Verlag, New York-Berlin-Heidelberg, pp 91–97

    Chapter  Google Scholar 

  140. Vatner DE, Knight D, Shen YT, Thomas JX, Homcy CJ, Vatner SF (1988) One hour of myocardial ischemia in conscious dogs increases beta-adrenergic receptors, but decreases adenylate cyclase activity. J Mol Cell Cardiol 20, 75–82

    Article  PubMed  CAS  Google Scholar 

  141. Verrier RL, Thompson PL, Lown B (1974) Ventricular vulnerability during sympathetic stimulation: role of heart rate and blood pressure. Cardiovasc Res 8, 602–610

    Article  PubMed  CAS  Google Scholar 

  142. Videbaek J, Christensen NJ, Sterndorff B (1972) Serial determination of plasma catecholamines in myocardial infarction. Circulation 46, 846–855

    Article  PubMed  CAS  Google Scholar 

  143. Vigne P, Frelin C, Cragoe Jr EJ, Lazdunski M (1983) Ethylisopropylamiloride: A new and highly potent derivative of amiloride for the inhibition of the Na+/H+ exchange system in various cell types. Biochem Biophys Res Commun 116, 86–90

    Article  PubMed  CAS  Google Scholar 

  144. Waldenström AP, Hjalmarson AC, Thornell L (1978) A possible role of noradrenaline in the development of myocardial infarction. Am Heart J 95, 43–51

    Article  PubMed  Google Scholar 

  145. Wilde AAM, Peters RJG, Janse MJ (1988) Catecholamine release and potassium accumulation in the isolated globally ischemic rabbit heart. J Mol Cell Cardiol 20, 887–896

    Article  PubMed  CAS  Google Scholar 

  146. Wilkerson RD, Sanders PW (1978) The antiarrhythmic action of amitriptyline on arrhythmias associated with myocardial infarction in dogs. Eur J Pharmacol 51, 193–198

    Article  PubMed  CAS  Google Scholar 

  147. Williams LT, Guerrero JL, Leinbach RC, Gold HK (1982) Prevention of reperfusion dysrhythmias by selective coronary alpha adrenergic blockade. Am J Cardiol 49: 1046 (abstr.)

    Article  Google Scholar 

  148. Winkler H, Apps DK, Fischer-Colbrie R (1986) The molecular function of adrenal chromaffin granules: Established facts and unresolved topics. Neurosci 18, 261–290

    Article  CAS  Google Scholar 

  149. Wollenberger A, Shahab L (1965) Anoxia-induced release of noradrenaline from the isolated perfused heart. Nature 207, 88–89

    Article  PubMed  CAS  Google Scholar 

  150. Yates JC, Beamish RE, Dhalla NS (1981) Ventricular dysfunction and necrosis produced by adrenochrome metabolite of epinephrine: Relation to pathogenesis of catecholamine cardiomyopathy. Am Heart J 102, 210–221

    Article  PubMed  CAS  Google Scholar 

  151. Yodice A (1941) Sympathectomy and experimental occlusion of a coronary artery. Am Heart J 22, 545–548

    Article  Google Scholar 

  152. Yusuf S, Peto R, Lewis J, Collins R, Sleight P (1985) Betablockade during and after myocardial infarction: An overview of the randomized trials. Prog Cardiovasc Dis 27, 335–371

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Gerd Heusch John Ross Jr.

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schömig, A., Richardt, G. (1991). Cardiac Sympathetic Activity in Myocardial Ischemia: Release and Effects of Noradrenaline. In: Heusch, G., Ross, J. (eds) Adrenergic Mechanisms in Myocardial Ischemia. Steinkopff, Heidelberg. https://doi.org/10.1007/978-3-662-11038-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-11038-6_2

  • Publisher Name: Steinkopff, Heidelberg

  • Print ISBN: 978-3-662-11040-9

  • Online ISBN: 978-3-662-11038-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics