Skip to main content

Mechanisms of Benefit in the Ischemic Myocardium due to Heart Rate Reduction

  • Conference paper
Adrenergic Mechanisms in Myocardial Ischemia

Summary

The studies reviewed here examine the role of heart rate reduction in the beneficial effect observed following β-adrenoceptor blockade during exercise-induced ischemia in conscious dogs. To further study the effects of heart rate reduction on regional blood flow in an ischemic bed without collateral circulation, anesthetized swine with controlled coronary perfusion were also studied. Measurements of regional myocardial blood flow (microspheres) and contractile function (sonomicrometers) during steady state exercise in dogs with chronic coronary artery stenosis indicated the existence of severe regional contractile dysfunction and subendocardial ischemia. The administration of β-adrenoceptor blockade (1.0mg/kg atenolol) improved regional contractile function when heart rate was reduced from 220 to 165 beats/min. Atrial pacing during exercise to prevent the bradycardia following β-adrenoceptor blockade eliminated the improved regional function and blood flow. Thus, the beneficial effect of β-blockade was only apparent when exercise heart rate was reduced. In anesthetized swine with constant inflow coronary perfusion, two levels of coronary hypoperfusion were examined at heart rates of 91 beats/min or 55 beats/min. Bradycardia was produced using the bradycardic agent UL-FS 49 (0.3mg/kg). Regional contractile function and subendocardial blood flow were markedly improved at the lower heart rate for either level of reduced coronary perfusion, indicating a redistribution of blood flow towards the subendocardium. The improvement in contractile function was larger than predicted on the basis of the improvement in blood flow per min to the subendocardium. Independent relationships between regional contractile function and the subendocardial blood flow per min were observed for each heart rate. Thus, the studies in conscious exercising dogs indicated that heart rate reduction is an essential mechanism for the improvement of ischemie regional myocardial contractile function during exercise by β-blockade. This is likely the result of the marked improvement in subendocardial blood flow per beat which accompanies the reduced heart rate; regional myocardial blood flow per beat appears to be a predictor of regional contractile function during ischemia both at rest and during exercise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Becker L (1976) Effect of tachycardia on left ventricular blood flow distribution during coronary occlusion. Am J Physiol 230, 1072–1077

    PubMed  CAS  Google Scholar 

  2. Boyle DMcC, Barber JM, McIlmoyle EL, Evans AE, Cran G, Elwood JH, Shanks RG (1983) Effect of very early intervention with metoprolol on myocardial infarct size. Br Heart J 49, 229–233

    Article  PubMed  CAS  Google Scholar 

  3. Buffington CW (1985) Hemodynamic determinants of ischemic myocardial dysfunction in the presence of coronary stenosis in dogs. Anesthesiology 63, 651–662

    Article  PubMed  CAS  Google Scholar 

  4. Domenech RJ, Hoffman JIE, Noble MIM, Saunders KB, Henson JR, Subijanto S (1969) Total and regional coronary blood flow measured by radioactive microspheres in conscious and anesthetized dogs. Circ Res 25, 581–596

    Article  PubMed  CAS  Google Scholar 

  5. Epstein SE, Braunwald E (1966) Beta-adrenergic receptor blocking drugs. Mechanisms of action and clinical applications. New Engl J Med 275, 1106–1112

    Article  PubMed  CAS  Google Scholar 

  6. Fedor JM, Rembert JC, McIntosh DM, Greenfield Jr JC (1980) Effects of exercise-and pacing-induced tachycardia on coronary collateral flow in the awake dog. Circ Res 46, 214–220

    Article  PubMed  CAS  Google Scholar 

  7. Forrester JS, Heifant RH, Pasternac A, Most AS, Kemp HG, Gorlin R (1971) Atrial pacing in coronary heart disease. Effect on hemodynamics, metabolism and coronary circulation. Am J Cardiol 27, 237–243

    Article  PubMed  CAS  Google Scholar 

  8. Gallagher KP, Folts JD, Shebuski RJ, Rankin JHG, Rowe GG (1980) Subepicardial vasodilator reserve in the presence of critical coronary stenosis in dogs. Am J Cardiol 46, 67–73

    Article  PubMed  CAS  Google Scholar 

  9. Gallagher KP, Kumada T, Koziol JA, McKown MD, Kemper WS, Ross Jr J (1980) Significance of regional wall thickening abnormalities relative to transmural myocardial perfusion in anesthetized dogs. Circulation 62, 1266–1274

    Article  PubMed  CAS  Google Scholar 

  10. Gallagher KP, Matsuzaki M, Koziol JA, Kemper WS, Ross Jr J (1984) Regional myocardial perfusion and wall thickening during ischemia in conscious dogs. Am J Physiol 247:H727–H738

    PubMed  CAS  Google Scholar 

  11. Guth BD, Heusch G, Seitelberger R, Ross Jr J (1987) Elimination of exercise-induced regional myocardial dysfunction by a bradycardic agent in dogs with chronic coronary stenosis. Circulation 75, 661–669

    Article  PubMed  CAS  Google Scholar 

  12. Guth BD, Heusch G, Seitelberger R, Ross Jr J (1987) Mechanism of beneficial effect of beta-adrenergic blockade on exercise-induced myocardial ischemia in conscious dogs. Circ Res 60, 738–746

    Article  PubMed  CAS  Google Scholar 

  13. Guth BD, Tajimi T, Seitelberger R, Lee JD, Matsuzaki M, Ross Jr J (1986) Experimental exerciseinduced ischemia: Drug therapy can eliminate regional dysfunction and oxygen supply-demand imbalance. J Am Coll Cardiol 7, 1036–1046

    Article  PubMed  CAS  Google Scholar 

  14. Heusch G, Yoshimoto N (1983) Effects of heart rate and perfusion pressure on segmental coronary resistances and collateral perfusion. Pfluegers Arch 397, 284–289

    Article  CAS  Google Scholar 

  15. Heusch G, Yoshimoto N, Heegemann H, Thämer V (1983) Interaction of methoxamine with compensatory vasodilation distal to coronary stenoses. Drug Res 33, 1647–1650

    CAS  Google Scholar 

  16. Heusch G, Yoshimoto N, Müller-Ruchholtz ER (1982) Effects of heart rate on hemodynamic severity of coronary artery stenosis in the dog. Basic Res Cardiol 77, 562–573

    Article  PubMed  CAS  Google Scholar 

  17. Hjalmarson A (1984) The Göteborg metoprolol trial in acute myocardial infarction. Am J Cardiol 53 Suppl.: 1D–2D

    Google Scholar 

  18. Indolfi C, Guth BD, Miura T, Miyazaki S, Schulz R, Ross Jr J (1989) Mechanisms of improved ischemic regional dysfunction by bradycardia. Studies on UL-FS 49 in swine. Circulation 80, 983–993

    Article  PubMed  CAS  Google Scholar 

  19. Lederman SN, Wenger TL, Harrell FE, Strauss HC (1987) Effects of different paced heart rates on canine coronary occlusion and reperfusion arrhythmias. Am Heart J 113, 1365–1369

    Article  PubMed  CAS  Google Scholar 

  20. Maseri A, L’Abbate A, Pesola A, Michelassi C, Marzilli M, de Nes M (1977) Regional myocardial perfusion in patients with atherosclerotic coronary artery disease, at rest and during angina pectoris induced by tachycardia. Circ Res 55, 423–433

    Article  CAS  Google Scholar 

  21. Matsuzaki M, Gallagher KP, Patritti J, Tajimi T, Kemper WS, White FC, Ross Jr J (1984) Effects of a calcium-entry blocker (diltiazem) on regional myocardial flow and function during exercise in conscious dogs. Circulation 69, 801–814

    Article  PubMed  CAS  Google Scholar 

  22. Matsuzaki M, Patritti J, Tajimi T, Miller M, Kemper WS, Ross Jr J (1984) Effects of β-blockade on regional myocardial flow and function during exercise. Am J Physiol 247:H52–H60

    PubMed  CAS  Google Scholar 

  23. MIAMI Trial Research Group (1985) General discussion. Am J Cardiol 56:55G–57G

    Article  Google Scholar 

  24. Ross Jr J (1989) Mechanisms of regional ischemia and antianginal drug action during exercise. Prog Cardiovasc Dis 31, 455–466

    Article  PubMed  Google Scholar 

  25. Schaper W, Schaper J, Xhonneux R, Vandesteene R (1969) The morphology of intercoronary anastomoses in chronic coronary artery occlusion. Cardiovasc Res 3, 315–323

    Article  PubMed  CAS  Google Scholar 

  26. Schulz R, Miyazaki S, Miller M, Thaulow E, Heusch G, Ross Jr J, Guth BD (1989) Consequences of regional inotropic stimulation of ischemic myocardium on regional myocardial blood flow and function in anesthetized swine. Circ Res 64, 1116–1126

    Article  PubMed  CAS  Google Scholar 

  27. Seitelberger R, Guth BD, Heusch G, Lee JD, Katayama K, Ross Jr J (1988) Intracoronary alpha 2-adrenergic receptor blockade attenuates ischemia in conscious dogs during exercise. Circ Res 62, 436–442

    Article  PubMed  CAS  Google Scholar 

  28. Tomoike H, Franklin D, Kemper WS, McKown D, Ross Jr J (1981) Functional evaluation of coronary collateral development in conscious dogs. Am J Physiol 241:H519–H524

    PubMed  CAS  Google Scholar 

  29. Vatner SF (1980) Correlation between acute reductions in myocardial blood flow and function in conscious dogs. Circ Res 47, 201–207

    Article  PubMed  CAS  Google Scholar 

  30. Wilcken DEL, Paoloni HJ, Eikens E (1971) Evidence for intravenous dipyridamole (Persantin) producing a “coronary steal” effect in the ischemie myocardium. Aust NZJ Med 1, 8–14

    Article  CAS  Google Scholar 

  31. Yusuf S, Sleight P, Rossi P, Ramsdale D, Peto R, Furze L, Sterry H, Pearson M, Motwani R, Parish S, Gray R, Bennett D, Bray C (1983) Reduction in infarct size, arrhythmias and chest pain by early intravenous beta blockade in suspected acute myocardial infarction. Circulation 67 suppl I:I32–I41

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Gerd Heusch John Ross Jr.

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Guth, B.D., Indolfi, C., Heusch, G., Seitelberger, R., Ross, J. (1991). Mechanisms of Benefit in the Ischemic Myocardium due to Heart Rate Reduction. In: Heusch, G., Ross, J. (eds) Adrenergic Mechanisms in Myocardial Ischemia. Steinkopff, Heidelberg. https://doi.org/10.1007/978-3-662-11038-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-11038-6_13

  • Publisher Name: Steinkopff, Heidelberg

  • Print ISBN: 978-3-662-11040-9

  • Online ISBN: 978-3-662-11038-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics