Advertisement

Wheat pp 128-151 | Cite as

Incorporation of Barley Chromosomes into Wheat

  • A. K. M. R. Islam
  • K. W. Shepherd
Part of the Biotechnology in Agriculture and Forestry book series (AGRICULTURE, volume 13)

Abstract

Wide crosses between different plant species and even between different genera have interested plant breeders and botanists since before the turn of the century. Wheat (Triticum),being the most important food crop of the world, has attracted most attention and it has been hybridized extensively with “alien” species belonging to several neighboring genera (Islam 1980a; Sharma and Gill 1983). The objectives in hybridizing wheat with barley are manifold. The prospect of transferring desirable agronomic characters like tolerance to drought or soil salinity from barley to wheat prompted some early workers to attempt wheat-barley hybridizations. More recent considerations are to transfer nematode and disease resistance genes from barley to wheat. Furthermore, hybrids between wheat and barley are the starting materials for determining the evolutionary and genetical relationship between wheat and barley chromosomes.

Keywords

Hexaploid Wheat Addition Line Wheat Chromosome Barley Chromosome Monosomic Addition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahokas H (1970) Some artificial intergeneric hybrids in the Triticeae. Ann Bot Fenn 7: 182–192Google Scholar
  2. Ainsworth CC, Miller TE, Gale MD (1986) The genetic control of grain esterases in hexaploid wheat 2. Homoeologous loci in related species. Theor Appl Genet 72: 219–225CrossRefGoogle Scholar
  3. Barclay IR (1975) High frequencies of haploid production in wheat (Triticum aestivum) by chromosome elimination. Nature (London) 256: 410–411CrossRefGoogle Scholar
  4. Bates LS, Campos VA, Rodriguez R, Anderson RG (1974) Progress toward novel cereal grains. Cereal Sci Today 19: 283–286Google Scholar
  5. Benito C, Figueiras AM, Gonzalez-Jaen MT, Salinas J (1985) Biochemical evidence of homoeology between wheat and barley chromosomes. Z Pflanzenzucht 94: 307–320Google Scholar
  6. Bernatzky R, Tanksley SD (1986) Toward a saturated linkage map in tomato based on isozymes and random cDNA sequences. Genetics 112: 887–898PubMedGoogle Scholar
  7. Blanco A, Fracchiolla GV, Greco B (1986) Intergeneric wheat × barley hybrid. J Hered 77: 98–100Google Scholar
  8. Bosch A, Figueiras AM, Gonzalez-Jaen MT, Benito C (1986) Leaf peroxidases a biochemical marker for group 2 chromosomes in the Triticinae. Genet Res 47: 103–107CrossRefGoogle Scholar
  9. Brown AHD (1980) Genetic basis of alcohol dehydrogenase polymorphism in Hordeum spontaneum. J Hered 71: 127–128Google Scholar
  10. Brown AHD (1983) Barley. In: Tanksley SD, Orton TJ (eds) Isozymes in plant genetics and breeding, pt B. Elsevier, Amsterdam, pp 57–77Google Scholar
  11. Brown AHD, Jacobsen JV (1982) Genetic basis and natural variation of a-amylase isozymes in barley. Genet Res 40: 315–324CrossRefGoogle Scholar
  12. Brown AHD, MundayJ (1982) Population genetic structure of land races of barley from Iran. Genetica 58: 85–96CrossRefGoogle Scholar
  13. Brown AHD, Lawrence GJ, Jenkin M, Douglass J, Gregory E (1989) Linkage drag in backcross breeding in barley. J Hered 80: 234–239Google Scholar
  14. Cauderon Y, Tempe J, Gay G (1978) Création et analyse cytogénétique d’un nouvel hybride: Hordeum vulgare, ssp. distichon X Triticum timopheevii. CR Acad Sci Paris Ser D: 1687–1690Google Scholar
  15. Chapman V, Miller TE (1978) The amphiploid of Hordeum chilense × Triticum aestivum. Cereal Res Commun 6: 351–352Google Scholar
  16. Chojecki AJS, Gale MD (1982) Genetic control of glucose phosphate isomerase in wheat and related species. Heredity 49:337–347.CrossRefGoogle Scholar
  17. Clauss E (1983) Bastarde aus Hordeum geniculatum All. and Triticum aestivum L. Arch Züchtungsforsch 13, 6: 413–418Google Scholar
  18. Driscoll CJ (1983) Third compendium of wheat-alien chromosome lines. In: Suppl Proc 6th Int Wheat genetic Symp, Kyoto, Jpn. Univ Press Adelaide, Aust, 34 ppGoogle Scholar
  19. Dvorak J, Knott DR (1974) Disomic and ditelosomic additions of diploid Agropyron elongatum chromosomes to T. aestivum. Can J Genet Cytol 16: 399–417Google Scholar
  20. Falk DE, Kasha KJ (1981) Comparison of the crossability of rye (Secale cereale) and Hordeum bulbosum onto wheat (Triticum aestivum). Can J Genet Cytol 23: 81–88Google Scholar
  21. Farrer W (1904) Some notes on the wheat “Bobs” its peculiarities, economic value and origin. Agric Gaz NSW 15: 849–854Google Scholar
  22. Fedak G (1980) Production, morphology and meiosis of reciprocal barley-wheat hybrids. Can J Genet Cyto 122: 117–123Google Scholar
  23. Fedak G (1982) Effect of cultivar combination on meiosis in barley-wheat hybrids. Can J Genet Cytol 24: 575–582Google Scholar
  24. Fedak G (1983) Hybrids between Hordeum pubiflorum and Triticum aestivum. Barley Genet Newslett 13: 59Google Scholar
  25. Fedak G (1985) Wide crosses in Hordeum. In: Rasmusson DC (ed) Barley monograph. Am Soc Agron, Madison, pp 155–186Google Scholar
  26. Fedak G, Jui PY (1982) Chromosomes of Chinese spring wheat carrying genes for crossability with Betzes barley. Can J Genet Cytol 24: 227–233Google Scholar
  27. Finch RA, Bennett MD (1980) Meiotic and mitotic chromosome behaviour in new hybrids of Hordeum with Triticum and Secale. Heredity 44: 201–209CrossRefGoogle Scholar
  28. Gordon GS, Raw AR (1932) Wheat-barley matings. Victorian Dep Agric J Aust 30: 138–144Google Scholar
  29. Gupta PK, Fedak G (1985) Intergeneric hybrids between Hordeum californicum and Triticum aestivum. J Hered 76: 365–368Google Scholar
  30. Hart GE, Islam AKMR, Shepherd KW (1980) Use of isozymes as chromosome markers in the isolation and characterization of wheat-barley chromosome addition lines. Genet Res 36: 311–325CrossRefGoogle Scholar
  31. Hejgaard J (1984) Gene products of barley chromosomes 4 and 7 are precursors of the major antigenic beer protein. J Inst Brew 90: 85–87Google Scholar
  32. Hejgaard J, Bjorn SE, Nielsen G (1984) Localization to chromosomes of structural genes for the major protease inhibitors of barley grains. Theor Appl Genet 68: 127–130CrossRefGoogle Scholar
  33. Helentjaris T, Slocum M, Wright S, Schaefer A, Nienhuis J (1986) Construction of genetic linkage maps in maize and tomato using restriction fragment length polymorphisms. Theor Appl Genet 72: 761–769CrossRefGoogle Scholar
  34. Islam AKMR (1980a) Wheat:Barley hybridization and the production and characterization of addition lines. PhD Thesis, Univ Adelaide, 184 ppGoogle Scholar
  35. Islam AKMR (1980b) Identification of wheat-barley addition lines with N-banding of chromosomes. Chromosoma 76: 365–373CrossRefGoogle Scholar
  36. Islam AKMR (1983) Ditelosomic additions of barley chromosomes to wheat. In: Proc 6th Int Wheat genetic Symp, Kyoto, Jpn, pp 233–238Google Scholar
  37. Islam AKMR, Shepherd KW (1980) Meiotic restitution in wheat-barley hybrids. Chromosoma 79: 363–373CrossRefGoogle Scholar
  38. Islam AKMR, Shepherd KW (198la) Production of disomic wheat-barley chromosome addition lines using Hordeum bulbosum crosses. Genet Res 37: 215–219CrossRefGoogle Scholar
  39. Islam AKMR, Shepherd KW (1981b) Wheat-barley addition lines: their use in genetic and evolutionary studies of barley. In: Proc 4th Int Barley genetic Symp, Edinburgh, UK, pp 729–739Google Scholar
  40. Islam AKMR, Shepherd KW (1988) Induced pairing between wheat and barley chromosomes. In: Proc 7th Int Wheat genetic Symp, Cambridge, pp 309-314Google Scholar
  41. Islam AKMR, Shepherd KW, Sparrow DHB (1975) Addition of individual barley chromosomes to wheat. In: Proc 3rd Int Barley genetic Symp, Garching, W Germ, pp 260–270Google Scholar
  42. Islam AKMR, Shepherd KW, Sparrow DHB (1978) Production and characterization of wheat-barley addition lines. In: Proc 5th Int Wheat genetic Symp, New Delhi, India, pp 365–371Google Scholar
  43. Islam AKMR, Shepherd KW, Sparrow DHB (1981) Isolation and characterization of euplasmic wheat-barley chromosome addition lines. Heredity 46: 161–174CrossRefGoogle Scholar
  44. Jiang J, Dajun L (1987) New Hordeum-Triticum hybrids. Cereal Res Commun 15: 95–99Google Scholar
  45. Kam-Morgan LNW, Gill BS, Muthukrishnan S (1986) Use of aneuploid wheat stocks to assign cDNA clones onto specific chromosomes. Genetics 113 (Suppl): 12Google Scholar
  46. Kimber G, Sallee PJ (1976) A hybrid between Triticum timopheevii and Hordeum bogdanii. Cereal Res Commun 4: 33–37Google Scholar
  47. Kimber G, Sallee PJ (1978) An amphiploid of Triticum timopheevii × Hordeum bogdanii. In: Cytogenetics and crop improvement Symp, Varanasi, IndiaGoogle Scholar
  48. Kreis M, Williamson MS, Shewry PR, Sharp P, Gale M (1988) Identification ofa second locus encoding ß-amylase on chromosome 2 of barley. Genet Res 51: 13–16CrossRefGoogle Scholar
  49. Kruse A (1973) Hordeum × Triticum hybrids. Hereditas 73:157–161CrossRefGoogle Scholar
  50. Kruse A (1974) Hordeum vulgare ssp. disticum (var. Bomi) × Triticum aestivum (var. Koga). An Fl hybrid with generative seed formation. Hereditas (Abstr) 78:319Google Scholar
  51. Kruse A (1982) Triticum × Hordeum hybrids. Hereditas (Abstr) 97:323Google Scholar
  52. Lawrence GJ, Shepherd KW (1981) Chromosomal location of genes controlling seed proteins in species related to wheat. Theor Appl Genet 59: 25–31Google Scholar
  53. Liu CJ, Gale MD (1988) Three new marker systems, iodine binding factor (1bf-1), malic enzyme (Mal-1) and malate dehydrogenase (Mdh-3) in wheat and related species. In: Proc 7th Int Wheat genetic Symp, Cambridge, pp 555–560Google Scholar
  54. Loi L, Ahluwalia B, Fincher GB (1988) Chromosomal location of genes encoding barley (1–3, 1–4)ß-glucan 4-glucanohydrolases. Plant Physiol 87: 300–302Google Scholar
  55. Marana C, Garcia-Olmedo F, Carbonero P (1988) Equivalent locations of sucrose synthase genes in chromosomes 7D of wheat, 7Ag of Agropyron elongatum, and 7H of barley. Febs Lett 234: 417–420CrossRefGoogle Scholar
  56. Marshall DR, Molnar-Lang M, Ellison FW (1983) Effects of 2,4-D on parthenocarpy and cross-com-patibility in wheat. Cereal Res Commun 11: 213–219Google Scholar
  57. Martin A, Chapman V (1977) A hybrid between Hordeum chilense and Triticum aestivum. Cereal Res Commun 5: 365–368Google Scholar
  58. Martin A, Sanchez-Monge Laguna E (1980) A hybrid between Hordeum chilense and Triticum turgidum. Cereal Res Commun 8: 349–353Google Scholar
  59. Martin A, Sanchez-Monge Laguna E (1982) Cytology and morphology of the amphiploid Hordeum chilense X Triticum turgidum cony. durum. Euphytica 31: 261–267CrossRefGoogle Scholar
  60. Miller TE, Chapman V (1976) Aneuploids in bread wheat. Genet Res 28: 37–45CrossRefGoogle Scholar
  61. Miller TE, Reader SM, Chapman V (1981) The addition of Hordeum chilense chromosomes to wheat. Induced variability in plant breeding. In: Int Symp Eucarpia. Pudoc, Wageningen, pp 79–81Google Scholar
  62. Miller TE, Reader SM, Ainsworth CC (1985) A chromosome of Hordeum chilense homoeologous to group 7 of wheat. Can J Genet Cytol 27: 101–104Google Scholar
  63. Mujeeb-Kazi A, Kimber G (1985) The production, cytology and practicality of wide hybrids in the Triticeae. Cereal Res Commun 13: 111–124Google Scholar
  64. Mujeeb-Kazi A, Rodriguez R (1983a) Cytogenetics of a Hordeum vulgare-Triticum turgidum hybrid and its backcross progeny with T. turgidum. J Hered 74: 109–113Google Scholar
  65. Mujeeb-Kazi A, Rodriguez R (1983b) Meiotic instability in Hordeum vulgare × Triticum aestivum hybrids. J Hered 74: 292–296Google Scholar
  66. Mujeeb-Kazi A, Rodriguez R (1984) Hordeum vulgare × Triticum aestivum hybrids. Cytologia 49: 557–565CrossRefGoogle Scholar
  67. Mujeeb-Kazi A, Thomas JB, Waters RF, Rodriguez R, Bates LS (1978) Chromosome instability in hybrids of Hordeum vulgare L. with Triticum turgidum and T. aestivum. J Hered 69: 179–182Google Scholar
  68. Muthukrishnan S, Gill BS, Swegle M, Ram Chandra G (1984) Structural genes for a-Amylases are located on barley chromosomes 1 and 6. J Biol Chem 259: 13637–13639PubMedGoogle Scholar
  69. Nielsen G, Hejgaard J (1987) Mapping of isozyme and protein loci in barley. In: Scandalios JD (ed) Isozymes: current topics in biological and medical research. Vol 15, Liss, New York, pp 77–95Google Scholar
  70. Nielsen G, Johansen HB (1986) Proposal for the identification of barley varieties based on the genotypes for 2 hordein and 39 isozyme loci of 47 reference varieties. Euphytica 35: 717–728CrossRefGoogle Scholar
  71. Nielsen G, Johansen H, Jensen J, Hejgaard J (1983) Localization on barley chromosome 4 of genes coding for ß-amylase (Bmyl) and protein Z (Paz!). Barley Genet Newslett 13: 55–57Google Scholar
  72. O’Mara JG (1940) Cytogenetic studies on Triticale. I. A method for determining the effects of individual Secale chromosomes on Triticum. Genetics 25: 401–408PubMedGoogle Scholar
  73. Pietro ME, Hart GE (1985) The genetic control of triosephosphate isomerase of hexaploid wheat and other Triticeae species. Genet Res 45: 127–142CrossRefGoogle Scholar
  74. Powling A, Islam AKMR, Shepherd KW (1981) Isozymes in wheat-barley hybrid derivative lines. Biochem Genet 19: 237–254PubMedCrossRefGoogle Scholar
  75. Pridham JT (1914) New varieties of wheat. Agric Gaz NSW 25: 230–233Google Scholar
  76. Riley R, Chapman V (1958) The production and phenotypes of wheat-rye chromosome addition lines. Heredity 12: 301–315CrossRefGoogle Scholar
  77. Riley R, Chapman V (1967) The inheritance in wheat of crossability with rye. Genet Res 9: 259–267CrossRefGoogle Scholar
  78. Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA 81: 8014–8018PubMedCrossRefGoogle Scholar
  79. Sakamoto S (1973) Patterns of phylogenetic differentiation in the tribe Triticinae. Seiken Ziho 24: 11–31Google Scholar
  80. Salcedo G, Fra-Mon P, Molina-Cano JL, Aragoncillo C, Garcia-Olmedo F (1984) Genetics of CMproteins(A-hordeins) in barley. Theor Appl Genet 68: 53–59CrossRefGoogle Scholar
  81. Sears ER (1977) An induced mutant with homoeologous pairing in common wheat. Can J Genet Cytol 19: 585–593Google Scholar
  82. Sears ER (1981) Transfer of alien genetic material to wheat. In: Peacock WJ, Evans LT (eds) Wheat science today and tomorrow. Univ Press, Cambridge, pp 75–89Google Scholar
  83. Sethi GS, Finch RA, Miller TE (1986) A bread wheat (Triticum aestivum) × cultivated barley (Hordeum vulgare) hybrid with homoeologous chromosome pairing. Can J Genet Cytol 28: 777–782Google Scholar
  84. Sharma HC, Gill BS (1983) Current status of wide hybridization in wheat. Euphytica 32: 17–31CrossRefGoogle Scholar
  85. Shepherd KW, Islam AKMR (1981) Wheat: barley hybrids — the first eighty years. In: Peacock WJ, Evans LT (eds) Wheat science — today and tomorrow. Univ Press, Cambridge, pp 107–128Google Scholar
  86. Shepherd KW, Islam AKMR (1987) Cytogenetic manipulation of barley chromosomes in a wheat background. In: Proc 5th Int Barley genetic Symp, Okayama, Jpn pp 375–387Google Scholar
  87. Shumny VK, Pershina LA, Belova LI (1981) Production of barley × rye and barley × wheat hybrids. Cereal Res Commun 9: 265–272Google Scholar
  88. Smith DC (1943) Intergeneric hybridization of Triticum and other grasses; principally Agropyron. J Hered 34: 219–224Google Scholar
  89. Snape JW, Chapman V, Moss J, Blanchard CE, Miller TE (1979) The crossabilities of wheat varieties with Hordeum bulbosum. Heredity 42: 291–298CrossRefGoogle Scholar
  90. Thomas JB, Mujeeb-Kazi A, Rodriguez R, Bates LS (1977) Barley × wheat hybrids. Cereal Res Commun 5: 181–188Google Scholar
  91. Wang LQ, Zhu HR, Guan QL, Rong JK (1987) Production of T. aestivum (6 ×)-H. bulbosum (4 ×) alien disomic addition lines and introgression of resistance genes (WYMV) from H. bulbosum to common wheat. In: Proc 5th Int Barley genetic Symp, Okayama, Jpn pp 359–368Google Scholar
  92. Waterhouse WL (1930) Australian rust studies. Ill. Initial results of breeding for rust resistance. Proc Linn Soc NSW 55: 596–636Google Scholar
  93. Wendorf F, Schild R, Hadidi NE, Close AE, Kobusiewicz M, Wieckowska H, Issawi B, Haas H (1979) Use of barley in the Egyptian late paleolithic. Science 205: 1341–1347PubMedCrossRefGoogle Scholar
  94. Wilson SA (1876) Wheat and rye hybrids. Trans Bot Soc Edinb 12: 286–288CrossRefGoogle Scholar
  95. Wojciechowska B (1985) Hybrids between Hordeum vulgare L. and Triticum aestivum L. Genet Pol 26: 457–462Google Scholar
  96. Xiao C, Zhenhua D, Wenxiang Z, Fuyu Y, Huijun X (1984) The barley × wheat crosses and their offspring plants. Acta Agron Sin 10: 65–71Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • A. K. M. R. Islam
  • K. W. Shepherd
    • 1
  1. 1.Department of Agronomy, Waite Agricultural Research InstituteUniversity of AdelaideGlen OsmondAustralia

Personalised recommendations