Advertisement

Wheat pp 285-352 | Cite as

Wheat Anther Culture: Agronomic Performance of Doubled Haploid Lines and the Release of a New Variety “Florin”

  • Y. Henry
  • J. de Buyser
Part of the Biotechnology in Agriculture and Forestry book series (AGRICULTURE, volume 13)

Abstract

The production of haploid plants from hybrids, followed by chromosome doubling, provides wheat breeders with a means of accelerating the process of true breeding line development. The interest of doubled haploid wheat plants has been understood since their discovery (Gaines and Aase 1926). Nevertheless, a useful technique for producing haploids started at the beginning of the 1970’s with anther culture (Chu et al. 1973; Ouyang et al. 1973; Picard and de Buyser 1973; Wang et al. 1973). Since that time, other techniques have been developed in order to produce haploid wheat plants: the bulbosum technique used for some particular genotypes (Barclay 1975), the Salmon method (Kobayashi and Tsunewaki 1978; Tsunewaki et al. 1984) and the wheat × maize crosses (Laurie and Bennet 1988). Limited numbers of haploids can also be produced using irradiated pollen (Natarajan and Swaminathan 1958; Snape et al. 1983) and unpollinated ovary culture (Zhu and Wu 1979; Yan et al. 1979).

Keywords

Double Haploid Anther Culture Regeneration Ability Haploid Plant Albino Plant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agache S, de Buyser J, Henry Y, Snape JW (1988) Studies on the genetic relationship between anther culture and somatic tissue culture abilities in wheat. Plant Breed 100: 26–33CrossRefGoogle Scholar
  2. Agache S, Bachelier B, de Buyser J, Henry Y, Snape J (1989) Genetic analysis of anther culture response in wheat using aneuploid, chromosome substitution and translocation lines. Theor Appl Genet 77: 7–11CrossRefGoogle Scholar
  3. Al Janabi K, Picard E (1981) Transfer chez le blé tendre par androgenèse in vitro des gènes de compatibilité avec Hordeum bulbosum (kr, krz). CR Acad Sci Paris 292: 247–250Google Scholar
  4. Amssa M, de Buyser J, Henry Y (1980) Origine des plantes diploïdes obtenues par culture in vitro d’anthères de Blé tendre (Triticum aestivum L.): influence du prétraitement au froid et de la culture in vitro sur le doublement. CR Acad Sci Paris 290: 1095–1097Google Scholar
  5. Andersson AC (1983) Hydroxyurea induces sister chromatid exchanges in G2: implications for the formation of chromosomal aberrations. Hereditas 98: 61–64CrossRefGoogle Scholar
  6. Anon (1974) Success of breeding the new tobacco cultivar Tan-Yuh no. 1. Acta Bot Sin 16: 300–303Google Scholar
  7. Anon (1976a) A sharp increase of the frequency of pollen plant induction in wheat with potato medium. Acta Genet Sin 3: 25–31Google Scholar
  8. Anon (1976b) New rice varieties Hua Yü 1 and Hua Yü 2 developed from anther culture. Acta Genet Sin 3: 19–24Google Scholar
  9. Armstrong KC, Nakamura C, Keller WA (1983) Karyotype instability in tissue culture regenerants of triticale (X Triticosecale wittmack) cv. Welsh from 6-month-old callus cultures. Z Pflanzenzücht 91: 233–245Google Scholar
  10. Armstrong TA, Metz SG, Mascia PN (1987) Two regeneration systems for the production of haploid plants from wheat anther culture. Plant Sci 51: 231–237CrossRefGoogle Scholar
  11. Baenziger PS, Schaeffer GW (1983) Dihaploids via anther culture. In: Owens LD (ed) Genetic engineering: applications to agriculture. Beltsville Symp, pp 269–284Google Scholar
  12. Bajaj YPS (1983) Regeneration of plants from pollen-embryos of Arachis, Brassica and Triticum sp. cryopreserved for one year. Curr Sci 52: 484–486Google Scholar
  13. Bajaj YPS (1984) The regeneration of plants from frozen pollen embryos and zygotic embryos of wheat and rice. Theor Appl Genet 67: 525–528CrossRefGoogle Scholar
  14. Bajaj YPS, Gosal SS (1986) Biotechnology of wheat improvement. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 2: Crops I. Springer, Berlin Heidelberg New York Tokyo, pp 3–38Google Scholar
  15. Barclay IR (1975) High frequencies of haploid production in wheat (Triticum aestivum) by chromosome elimination. Nature (London) 256: 410–411CrossRefGoogle Scholar
  16. Bayliss MW (1973) Origin of chromosome number variation in cultured plant cells. Nature (London) 246: 529–530CrossRefGoogle Scholar
  17. Bayliss MW (1980) Chromosomal variation in plant tissues in culture. Int Rev Cytol Suppl 11A:113–144 Bennett MD, Hughes WG (1973) Additional mitosis in wheat pollen induced by ethrel. Nature (London) 240: 566–568Google Scholar
  18. Benslimane A, Hartmann C, de Buyser J, Henry Y, Rode A (1988) Ribosomal DNA as a convenient probe to follow segregation and possible divergency from expected homozygosity after haploidization of an androgenetic process. Theor Appl Genet 75: 389–396CrossRefGoogle Scholar
  19. Borgel A, Arnaud M (1986) Progress in eggplant breeding, use ofhaplomethod. Capsicum Newsl 5:65–66 Breiman A, Felsenburg T, Galun E (1989) Is Nor region variability in wheat invariability caused by tissue culture? Theor Appl Genet 77: 809–814Google Scholar
  20. Bullock WP, Baenziger PS, Schaeffer GW, Bottino PJ (1982) Anther culture of wheat (Triticum aestivum L.) F, ‘s and their reciprocal crosses. Theor Appl Genet 65: 155–159CrossRefGoogle Scholar
  21. Campbell KW, Brawn RI, Ho KM (1984) Rodeo barley. Can J Plant Sci 64: 203–205CrossRefGoogle Scholar
  22. Chao X, Duan C, Chen J, Yang M (1981) A preliminary study of hereditary variability of quantitative characters from pollen plants in spring wheat. Acta Genet Sin 8: 361–368Google Scholar
  23. Chaplin JF, Burk LG (1984) Registration of LMAFC 34 Tobacco germplasm. Crop Sci 24: 1220CrossRefGoogle Scholar
  24. Chaplin JF, Burk LG, Gooding GV, Powell NT (1980) Registration of NC 744 Tobacco germplasm (Reg n° GP18). Crop Sci 20: 677CrossRefGoogle Scholar
  25. Charmet G, Bernard S (1984) Diallel analysis of androgenetic plant production in hexaploid triticale (Triticosecale, Wittmack ). Theor Appl Genet 69: 55–61Google Scholar
  26. Charmet G, Branlard G (1985) A comparison of androgenetic doubled-haploid, and single seed descent lines in Triticale. Theor Appl Genet 71: 193–200Google Scholar
  27. Charmet G, Vedel F, Bernard M, Bernard S, Mathieu C (1985) Cytoplasmic variability in androgenetic doubled haploid lines of Triticale. Agronomie 5: 709–717CrossRefGoogle Scholar
  28. Charmet G, Bernard S, Bernard M (1986) Origin of aneuploid plants obtained by anther culture in Triticale. Can J Genet Cytol 28: 444–452Google Scholar
  29. Chen CC, Kasha KJ, Marsolais A (1984) Segmentation patterns and mechanisms of genome multiplication in cultured microspores of barley. Can J Genet Cytol 26: 475–483Google Scholar
  30. Chen CM, Chen CC, Li MH (1982) Genetic analysis of anther-derived plants of rice. J Hered 73: 49–52Google Scholar
  31. Chen Y, Li LT (1978) Investigation and utilization of pollen-derived haploid plant in rice and wheat. In: Proc Symp Plant tissue culture, May 25–30, Peking, pp 199–211Google Scholar
  32. Choo TM, Kannenberg LW (1978) The efficiency of using doubled haploids in a recurrent selection program in a diploid, cross-fertilized species. Can J Genet Cytol 20: 505–511Google Scholar
  33. Choo TM, Reinbergs E, Park SJ (1982) Comparison of frequency distributions of doubled haploid and single seed descent lines in barley. Theor Appl Genet 61: 215–218Google Scholar
  34. Chu CC, Wang CC, Sun CS, Chien NP, Yin KC, Hsu C (1973) Investigation on the induction and morphogenesis of wheat (Triticum vulgare) pollen plants. Acta Bot Sin 15: 1–11Google Scholar
  35. Chu CC, Wang CC, Sun CS, Hsu C, Yin KC, Chu CY, Bi FY (1975) Establishment of an efficient medium for anther culture of rice through comparative experiments on the nitrogen sources. Sci Sin 18: 659–668Google Scholar
  36. Chu CC, Wang CC, Sun CS (1976) Development of the pollen embryo of rice and wheat on the medium devoid of hormones. Acta Bot Sin 18: 239–246Google Scholar
  37. Chuang CC, Ouyang J, Chia H, Chou SM, Ching CK (1978) A set of potato media for wheat anther culture. In: Proc China-Australia Plant tissue culture Symp, Peking 1978, pp 51–66Google Scholar
  38. Datta SK, Wenzel G (1987) Isolated microspore derived plants formation via embryogenesis in Triticum aestivum L. Plant Sci 48: 49–54CrossRefGoogle Scholar
  39. Day A, Ellis THN (1984) Chloroplast DNA deletions associated with Wheat plants regenerated from pollen: possible basis for maternal inheritance of chloroplaste. Cell 39: 359–368PubMedCrossRefGoogle Scholar
  40. Day A, Ellis THN (1985) Deleted forms of plastid in albino plants from cereal anther culture. Curr Genet 9: 671–678CrossRefGoogle Scholar
  41. Deaton WR, Legg PD, Collins GB (1982) A comparison of burley tobacco doubled-haploid lines with their source inbred cultivars. Theor Appl Genet 62: 69–74Google Scholar
  42. Deaton WR, Metz SG, Armstrong TA, Mascia PN (1987) Genetic analysis of the anther-culture response of three spring wheat crosses. Theor Appl Genet 74: 334–338CrossRefGoogle Scholar
  43. de Buyser J, Henry Y (1979) Androgenèse sur des Blés tendres en cours de sélection. 1. L’obtention des plantes in vitro. Z Pflanzenzucht 83: 49–56Google Scholar
  44. de Buyser J, Henry Y (1980a) Comparaison de différents milieux utilisés en culture d’anthères in vitro chez le Blé tendre. Can J Bot 58: 997–1000CrossRefGoogle Scholar
  45. de Buyser J, Henry Y (1980b) Induction of haploid and diploid plants through in vitro anther culture of haploid wheat. Theor Appl Genet 57: 57–58CrossRefGoogle Scholar
  46. de Buyser J, Henry Y (1986) Utilisation des haploïdes doublés en sélection. Actualités Botaniques 4. Bull Soc Bot Fr 133: 51–57Google Scholar
  47. de Buyser J, Picard E (1975) Observation de divisions supplémentaires dans les grains de pollen de plantes homozygotes de Blé tendre (Triticum aestivum L.) obtenues par androgenèse in vitro. CR Acad Sci Paris 281: 1153–1156Google Scholar
  48. de Buyser J, Henry Y, Amssa M (1981a) In vitro anther culture of wheat (Triticum aestivum L.): chromosome variations. In: Induced variability in plant breeding. Int Symp Eucarpia, Wageningen, 31 Aug-4 Sept, pp 121–122Google Scholar
  49. de Buyser J, Henry Y, Laur R, Lonnet P (1981b) Utilisation de l’androgenèse in vitro dans des programmes de sélection du Blé tendre (Triticum aestivum L.). Z Pflanzenzucht 87: 290–299Google Scholar
  50. de Buyser J, Henry Y, Taleb G (1985) Wheat androgenesis: cytogenetical analysis and agronomic performance of doubled haploids. Z Pflanzenzucht 95: 23–34Google Scholar
  51. de Buyser J, Henry Y, Lonnet P, Hertzog R, Hespel A (1987) Florin: A doubled haploid wheat variety developed by the anther culture method. Plant Breed 98: 53–56Google Scholar
  52. de Buyser J, Henry Y, Taleb G (1988) Meiotic analysis of androgenetic doubled haploid wheat plants. In: Proc 7th Int Wheat genetics Symp. Cambridge, 13–19 July, pp 215–219Google Scholar
  53. de Buyser J, Bachelier B, Henry Y (1989) Gametic selection during wheat anther culture. Genome 32: 54–56CrossRefGoogle Scholar
  54. Dunwell JM, Francis RJ, Powell W (1987) Anther culture of Hordeum vulgare L.: a genetic study of microspore callus production and differentiation. Theor Appl Genet 74: 60–64CrossRefGoogle Scholar
  55. Fedak G, Armstrong KC, Handyside RJ (1987a) Chromosome instability in wheat plants regenerated from suspension culture. Genome 29: 627–629CrossRefGoogle Scholar
  56. Fedak G, Armstrong KC, Handyside RJ (1987b) Chromosome irregularities in Wheat and Triticale plants regenerated from leaf base callus. Plant Breed 99: 151–154CrossRefGoogle Scholar
  57. Felsenburg T, Feldman M, Galun E (1987) Aneuploid and alloplasmic lines as tools for the study of nuclear and cytoplasmic control of culture ability and regeneration of scutellar calli from common wheat. Theor Appl Genet 74: 802–810CrossRefGoogle Scholar
  58. Feng GH, Ouyang J (1988) The effects of KNO,j concentration in callus induction medium for wheat anther culture. Plant Cell, Tissue Organ Culture 12: 3–12Google Scholar
  59. Foroughi-Wehr B, Friedt W (1984) Rapid production of recombinant barley yellow mosaic virus-resistant Hordeum vulgare lines by anther culture. Theor Appl Genet 67: 377–382CrossRefGoogle Scholar
  60. Foroughi-Wehr B, Pickering RA, Friedt W (1981) Related responses of barley cultivars to the bulbosum and anther-culture technique of haploid production. Barley Genet Newslett 11: 54–59Google Scholar
  61. Foroughi-Wehr B, Friedt W, Wenzel G (1982) On the genetic improvement of androgenetic haploid formation in Hordeum vulgare L. Theor Appl Genet 62: 233–239Google Scholar
  62. Friedt W, Foroughi-Wehr B (1980) Microspore derived chromosome number and structural variants of barley (Hordeum vulgare L.). Barley Genet Newslett 10: 16–20Google Scholar
  63. Friedt W, Foroughi-Wehr B (1983) Field performance of androgenetic doubled haploid spring barley from F, hybrids. Z Pflanzenzücht 90: 177–184Google Scholar
  64. Gaines EF, Aase HC (1926) A haploid wheat plant. Amer J Bot 13: 373–385CrossRefGoogle Scholar
  65. Galiba G, Kovacs G, Sutka J (1986) Substitution analysis of plant regeneration from callus culture in wheat. Plant Breed 97: 261–263CrossRefGoogle Scholar
  66. Hansen FL, Andersen SB, Due IK, Olesen A (1988) Nitrous oxide as a possible alternative agent for chromosome doubling of wheat haploids. Plant Sci 54: 219–222CrossRefGoogle Scholar
  67. Hartmann C, de Buyser J, Henry Y, Falconet D, Lejeune B, Benslimane A, Quetier F, Rode A (1987) Time-course of the mitochondria) genome variation in wheat embryogenic somatic tissue cultures. Plant Sci 53: 191–198CrossRefGoogle Scholar
  68. He D, Ouyang J (1984) Callus and plantlet formation from cultured wheat anthers at different development stages. Plant Sci Lett 33: 71–79CrossRefGoogle Scholar
  69. He D, Ouyang J (1985) Observation of androgenesis in cultured wheat anthers at meiosis, tetrad, early uninucleate and trinucleate stage. Acta Bot Sin 27: 469–475Google Scholar
  70. Heberle-Bors E, Odenbach W (1985) In vitro pollen embryogenesis and cytoplasmic male sterility in Triticum aestivum. Z Pflanzenzücht 95: 14–22Google Scholar
  71. Heberle-Bors E, Reinert J (1981) Environmental control and evidence for predetermination of pollen embryogenesis in Nicotiana tabacum pollen. Protoplasma 109: 249–255CrossRefGoogle Scholar
  72. Henry Y, de Buyser J (1980) Androgenèse sur des blés tendres en cours de sélection. 2. L’obtention des grains. Z Pflanzenzücht 84: 9–17Google Scholar
  73. Henry Y, de Buyser J (1981) Float culture of wheat anthers. Theor Appl Genet 60: 77–79CrossRefGoogle Scholar
  74. Henry Y, de BuyserJ (1985) Effect of the I B/ 1R translocation on anther culture ability in wheat(Triticum aestivum L.). Plant Cell Rep 4: 307–310CrossRefGoogle Scholar
  75. Henry Y, de Buyser J, Lebrun J (1980) Androgenèse sur des Blés tendres (Triticum aestivum) en cours de sélection. 3. Electrophorèse des gliadines de quelques haploides doublés. Z Pflanzenzücht 85: 322–327Google Scholar
  76. Henry Y, de BuyserJ, Guenegou T, Ory C (1984) Wheat microspore embryogenesis during in vitro anther culture. Theor Appl Genet 67: 439–442CrossRefGoogle Scholar
  77. Henry Y, de Buyser J, Agache S, Parker BB, Snape JW (1988) Comparisons of methods of haploid production and performance of wheat lines produced by doubled haploidy and single seed descent. In: Proc 7th Int Wheat genetics Symp. Cambridge, 13–19 July, pp 1087–1092Google Scholar
  78. Ho KM, Jones GE (1980) Mingo barley. Can J Plant Sci 60: 279–280CrossRefGoogle Scholar
  79. Hu D (1986) Jinghua no 1, a winter wheat variety derived from pollen sporophyte. In: Hu H, Yang H (eds )Google Scholar
  80. Haploids of higher plant in vitro. Springer, Berlin Heidelberg New York Tokyo, pp 137–148Google Scholar
  81. Hu D, Tang Y, Yuan Z, Wang J (1983) The induction of pollen sporophyte of winter wheat and the development of the new variety Jinghua no 1. Sci Agric Sin 1: 29–35Google Scholar
  82. Hu DF, Yuan ZD, Tang YL, Liu JP (1985) Jinghua no 1, a winter wheat variety derived from pollen sporophyte. Sci Sin 28: 733–745Google Scholar
  83. Hu H (1978) Advances in anther culture investigations in China. In: Proc Symp Plant tissue culture, May 25–30, Peking, pp 3–10Google Scholar
  84. Hu H (1986a) Variability and gamete expression in pollen-derived plants in wheat. In: Hu H, Yang H (eds) Haploids of higher plants in vitro. Springer, Berlin Heidelberg New York Tokyo, pp 67–78Google Scholar
  85. Hu H (1986b) Wheat: improvement through anther culture. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 2: Crops I. Springer, Berlin Heidelberg New York Tokyo, pp 55–72Google Scholar
  86. Hu H, Hao S (1980) The present status of investigations of plant tissue and cell culture in china. In: Sala F, Parisi B, Cella R, Ciferri O (eds) Plant cell cultures: results and perspectives. Proc Int Worksh, Pavia, Elsevier, Amsterdam, pp 89–104Google Scholar
  87. Huang B (1980) Ovaries and glumes as conditioning agents in barley culture. John Innes Inst Annu Rep, pp 66–67Google Scholar
  88. Huang B (1984) A preliminary study on anther density effect in wheat anther culture. Plant Physiol Commun 4: 30Google Scholar
  89. Huang B, Dunwell JM, Powell W, Hayter AM, Wood W (1984) The relative efficiency of microspore culture and chromosome elimination as methods of haploid production in Hordeum vulgare L. Z Pflanzenzücht 92: 22–29Google Scholar
  90. Huang CS, Tsay HS, Chern CG, Buu RH, Chen CC, Tseng TH, Cheng CH, Lin YC, Wu SF (1985) Application of anther culture to rice breeding. J Agric Res China 34: 391–401Google Scholar
  91. Hunsinger H, Schauz K (1987) The influence of dicamba on somatic embryogenesis and frequency of plant regeneration from cultured immature embryos of wheat (Triticum aestivum L.). Plant Breed 98: 119–123CrossRefGoogle Scholar
  92. Inagaki M (1987) Variation in plant height of doubled haploid lines of wheat derived from intergeneric crosses with Hordeum bulbosum L. Jpn J Genet 37: 275–282Google Scholar
  93. Inagaki M, Henry Y, de Buyser J (1987) Comparison of haploid production efficiencies through anther culture and intergeneric cross of three wheat varieties and their F, hybrids. Jpn J Breed 37: 474–478Google Scholar
  94. Jones AM, Petolino JF (1987) Effect of donor plant genotype and growth environment on anther culture of soft-red winter wheat (Triticum aestivum L.). Plant Cell Tissue Organ Cult 8: 215–223CrossRefGoogle Scholar
  95. Kleitjer G, Schmid DJ, Winzeler H, Fried PM (1986) La culture d’anthères: possibilités limites dans la sélection du blé et de l’épeautre. Rev Suisse Agric 18: 305–311Google Scholar
  96. Kobayashi M, Tsunewaki K (1978) On the genetic mechanism of haploid induction in the cytoplasm substitution lines of common wheat. Wheat Inf Sery 47 /48: 36–40Google Scholar
  97. Kohlenbach HW, Wernicke W (1978) Investigation on the inhibitory effect and the function of active carbon in anther culture. Z Pflanzenphysiol 86: 463–472Google Scholar
  98. Kohler F, Wenzel G (1985) Regeneration of isolated barley microspores in conditioned media and trials to characterize the responsible factor. J Plant Physiol 121: 181–191CrossRefGoogle Scholar
  99. Koller J (1984) Les variétés instables. Bull Féd Natl Agric Mutl Semences 87: 46–48Google Scholar
  100. Kudirka DT, Schaeffer GW, Baenziger PS (1983) Cytogenetic characteristics of wheat plants regenerated from anther calli of “Centurk”. Can J Genet Cytol 25: 513–517Google Scholar
  101. Kudirka DT, Schaeffer GW, Baenziger PS (1986) Wheat: Genetic variability through anther culture. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 2: Crops I. Springer, Berlin Heidelberg New York Tokyo, pp 39–54Google Scholar
  102. Lapitan NLV, Sears RG, Gill BS (1984) Translocations and other karyotypic structural changes in wheat x rye hybrids regenerated from tissue culture. Theor Appl Genet 68: 547–554CrossRefGoogle Scholar
  103. Laurie DA, Bennett MD (1988) The production of haploid wheat plants from wheat x maize crosses. Theor Appl Genet 76: 393–397CrossRefGoogle Scholar
  104. Lazar MD, Schaeffer GW, Baenziger PS (1984a) Cultivar and cultivar x environment effects on the development of callus and polyhaploid plants from anther cultures of wheat. Theor Appl Genet 67: 273–277CrossRefGoogle Scholar
  105. Lazar MD, Baenziger PS, Schaeffer GW (1984b) Combining abilities and heritability of callus formation and plantlet regeneration in Wheat (Triticum aestivum L.) anther culture. Theor Appl Genet 68: 131–134CrossRefGoogle Scholar
  106. Lazar MD, Schaeffer GW, Baenziger PS (1985) The physical environment in relation to high frequency callus and plantlet development in anther cultures of Wheat (Triticum aestivum L.) cv. Chris. J Plant Physiol 121: 103–109Google Scholar
  107. Liang GH, Xu A, Hoang-Tang (1987) Direct generation of wheat haploids via anther culture. Crop Sci 27: 336–339Google Scholar
  108. Marburger JE, Sammons DJ, Schaeffer GW (1987) Effect of a modified potato medium on anther culture of wheat. Crop Sci 27: 351–354CrossRefGoogle Scholar
  109. Mathias RJ, Fukui K (1986) The effect of specific chromosome and cytoplasm substitution on the tissue culture response of wheat (Triticum aestivum) callus. Theor Appl Genet 71: 797–800CrossRefGoogle Scholar
  110. Mattingly CF, Collins GB (1974) The use of anther derived haploids in Nicotiana. III. Isolation of nullisomics from monosomic lines. Chromosoma 46: 29–36Google Scholar
  111. McClintock B (1984) The significance of responses of the genome to challenge. Science 226: 792–801PubMedCrossRefGoogle Scholar
  112. Mettin D, Bluthner WD, Schlegel G (1973) Additional evidence on spontaneous 1B/1R Wheat-rye substitutions and translocations. In: Proc 4th Int Wheat genetics Symp Missouri Agric Exp Stn, Columbia, Missouri, pp 179–184Google Scholar
  113. Metz SG, Sharma HC, Armstrong TA, Mascia PN (1988) Chromosome doubling and aneuploidy in anther-derived plants from two winter wheat lines. Genome 30: 177–181CrossRefGoogle Scholar
  114. Miao Z, Zhuang J, Han H (1988) Expression of various gametic types in pollen plants regenerated from hybrids between Triticum-Agropyron and wheat. Theor Appl Genet 75: 485–491CrossRefGoogle Scholar
  115. Miller TE (1984) The homologous relationship between the chromosome of rye and wheat. Current status. Can J Genet Cytol 26: 578–589Google Scholar
  116. Moon HP, Cho SY, Son YH, Jun BT, Lim MS, Choi HC, Park NK, Park RK, Chung GS (1986) An anther-derived new high quality and high yield rice variety “Hwaseongbyeo”. Res Rep Rural Dev Admin 28: 27–33Google Scholar
  117. Moore GA, Collins GB (1982) Isolation of nullihaploids from diverse genotypes of Nicotiana tabacum. J Hered 73: 192–196Google Scholar
  118. Morrison JW (1953) Chromosome behaviour in wheat monosomics. Heredity 7: 203–217CrossRefGoogle Scholar
  119. Muller G, Borschel H, Vahl U, Wiberg A, Hartel H, Damisch W (1989) Die Nutzung der Antheren-kulturmethode im Zuchtprozeß von Winterweizen. I. Zur Androgenesefähigkeit von 1B–1RWeizen-Roggen-Translokationsformen. Plant Breed 102: 196–207CrossRefGoogle Scholar
  120. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473 497Google Scholar
  121. Nakamura A, Yamada T, Oka M, Tatemichi Y, Egushi K, Ayabe T, Kobayashi K (1975) Studies on the haploid method of breeding by anther culture in tobacco. V. Breeding of mild flue-cured variety F 211 by haploid method. Bull Iwata Tobacco Exp Stn 7: 29–39Google Scholar
  122. Natarajan T, Swaminathan MS (1958) Haploidy induced by radiations in wheat. Experientia 14: 336–337CrossRefGoogle Scholar
  123. Niizeki M, Hayashi H, Saito K (1984) Production of disomic haploids by anther culture of a series of trisomic plants in Nicotiana tabacum. Jpn J Breed 34: 1–8Google Scholar
  124. Nitsch JP (1969) Experimental androgenesis in Nicotiana. Phytomorphology 19: 389–404Google Scholar
  125. Ockendon DJ, Sutherland RA (1987) Genetic and non-genetic factors affecting anther culture of Brussels sprouts (Brassica oleracea var. gemmifera). Theor Appl Genet 74: 566–570CrossRefGoogle Scholar
  126. Ouyang J (1986) Induction of pollen plants in Triticum aestivum. Hu H, Yang H (eds) Haploidy of higher plants in vitro. Springer, Berlin Heidelberg New York Tokyo, pp 26–41Google Scholar
  127. Ouyang J, Hu H, Chuang CC, Tseng CC (1973) Induction of pollen plants from anthers of Triticum aestivum L. cultured in vitro. Sci Sin 16: 79–95Google Scholar
  128. Ouyang J, Zhou S, Jia S (1980) Response of anther culture to culture temperature in wheat. Annu Rep Inst Genet Acad Sin, pp 69–70Google Scholar
  129. Ouyang J, Zhous M, Jia SE (1983) The response of anther culture to culture temperature in Triticum aestivum. Theor Appl Genet 66: 101–109CrossRefGoogle Scholar
  130. Pan JL, Gao GH (1978) The production of wheat pollen embryos and the influence of some factors on its frequency of induction. Acta Bot Sin 20: 122–128Google Scholar
  131. Pan JL, Gao GH (1980) To repeat the effects of hormones on the early microspore development of wheat in vitro in anther culture. Acta Bot Sin 22: 305–310Google Scholar
  132. Pan JL, Pai SH, Kuan CL, Yu HH (1975) Certain factors affecting the frequency of induction of Wheat (Triticum vulgare) pollen plants. Acta Bot Sin 17: 161–166Google Scholar
  133. PapenfussJM, Carman JG (1987) Enhanced regeneration from wheat callus cultures using Dicamba and Kinetix. Crop Sci 27: 588–593CrossRefGoogle Scholar
  134. Parisi L, Picard E (1986) Disease response of doubled haploid lines and their original cultivars in wheat (Triticum aestivum L.). Z Pflanzenzucht 96: 63–78Google Scholar
  135. Pauk J, Kertesz Z, Barabas Z (1988) Production of wheat lines from anther culture and their achievements in performance tests. Növénytermelés 37: 197–203Google Scholar
  136. Pelletier G (1979) Haploidie et amélioration des plantes: étude de l’androgenèse in vitro chez Nicotiana tabacum et utilisation des haploïdes en sélection. These Doct Etat, Univ Paris-Sud, OrsayGoogle Scholar
  137. Pelletier G, Ilami M (1972) Les facteurs de l’androgenèse in vitro chez Nicotiana tabacum. Z Pflanzenphysiol 68: 97–114Google Scholar
  138. Petolino JF, Thompson SA (1987) Genetic analysis of anther culture response in maize. Theor Appl Genet 74: 284–286CrossRefGoogle Scholar
  139. Picard E, de Buyser J (1973) Obtention de plantules haploïdes de Triticum aestivum L. à partir de cultures d’anthères in vitro. CR Acad Sci Paris 277: 1463–1466Google Scholar
  140. Picard E, de Buyser J (1975a) Nouveaux résultats concernant la culture d-anthères in vitro de Blé tendre (Triticum aestivum L.). Effets d’un choc thermique et de la position de l’anthère dans l’épi. CR Acad Sci Paris, 281: 127–130Google Scholar
  141. Picard E, de Buyser J (1975b) Nouveaux resultats concernant la culture d’anthères de Triticum aestivum L. Conditions de régénération des plantes haploïdes et production de lignées entièrement homozygotes. CR Acad Sci Paris 281: 989–992Google Scholar
  142. Picard E, de Buyser J (1977) High production of embryoids in anther culture of pollen-derived homozygous spring wheat. Ann Amelior Plantes 27: 483–488Google Scholar
  143. Picard E, de Buyser J, Henry Y (1978) Technique de production d’haploïdes de Blé par culture d’anthères in vitro. Select Fr 26: 25–38Google Scholar
  144. Picard E, Hours C, Gregoire S, Phan TH, Meunier JP (1987) Significant improvement of androgenetic haploid and doubled haploid induction from wheat plants treated with a chemical hybridization agent. Theor Appl Genet 74: 289–297CrossRefGoogle Scholar
  145. Purnhauser L, Medgyesy P, Czako M, Dix PJ, Marton L (1987) Stimulation of shoot regeneration in Triticum aestivum and Nicotiana plumbaginifolia Viv. tissue cultures using the ethylene inhibitor AgNO,. Plant Cell Rep 6: 1–4CrossRefGoogle Scholar
  146. Raquin C (1982) Genetic factors in anther culture of petunia. Theor Appl Genet 63: 151–154CrossRefGoogle Scholar
  147. Raquin C, Amssa M, Henry Y, de Buyser J, Essad S (1982) Origine des plantes polyploides obtenues par culture d’anthères. Analyse cytophotométrique in situ et in vitro des microspores de Pétunia et de Blé tendre. Z Pflanzenzücht 89: 265–277Google Scholar
  148. Reinbergs E, Park SJ, Song LS (1976) Early identification of superior barley crosses by the doubled haploid technique. Z Pflanzenzücht 76: 215–224Google Scholar
  149. Rivard SR, Cappadocia M, Vincent G, Brisson N, Landry BS (1989) Restriction fragment length polymorphism (RFLP) analyses of plants produced by in vitro anther culture of Solanum chacoense Bitt. Theor Appl Genet 78: 49–56CrossRefGoogle Scholar
  150. Roberts SL, Dunwell JM (1986) The initiation of pollen embryogenesis in anther cultures of Hordeum vulgare L. (barley). In: Abstr 6th Int IAPTC Congr, Univ Minn, Minneapolis, Aug 3–8, p 345Google Scholar
  151. Rode A, Hartmann C, Dron M, Picard E, Quetier F (1985) Organelle genome stability in anther-derived doubled haploids of wheat (Triticum aestivum L., cv. Moisson ). Theor Appl Genet 71: 320–324Google Scholar
  152. Rode A, Hartmann C, Falconet D, Lejeune B, Quetier F, Benslimane A, Henry Y, de Buyser J (1987a) Extensive mitochondrial DNA variation in somatic tissue cultures initiated from wheat immature embryos. Curr Genet 12: 369–376CrossRefGoogle Scholar
  153. Rode A, Hartmann C, Benslimane A, Picard E, Quetier F (1987b) Gametoclonal variation detected in the nuclear ribosomal DNA from doubled haploid lines of a spring wheat (Triticum aestivum L. cv. Cesar ). Theor Appl Genet 74: 31–37Google Scholar
  154. Schaeffer GW, Baenziger PS, Worley J (1979) Haploid plant development from anthers and in vitro embryo culture of wheat. Crop Sci 19: 697–702CrossRefGoogle Scholar
  155. Schmid J, Keller ER (1986) Improved androgenetic response in wheat (Triticum aestivum) as a result of gametocide application to anther donor plants. In: 6th Int Congr Plant tissue and cell culture, Univ Minn, Minneapolis, Aug 3–8, p 122Google Scholar
  156. Schmid J, Winzeler H, Fried PM, Kleijer G (1985) Die Anwendung der Antherenkultumethode in der Getreidezüchtung dev Schweiz. Mitt Schweiz Landwirtsch 8: 187–234Google Scholar
  157. Schumann G, Hoffmann B (1989) Some pros and cons in using potato extract medium in anther culture of triticale and wheat. Arch Züchtungsforsch Berlin 19 (1): 21–27Google Scholar
  158. Sears ER (1939) Cytogenetic studies with polyploid species of wheat. I. Chromosomal aberrations in the progeny of a haploid of Triticum vulgare. Genetics 24: 509–523PubMedGoogle Scholar
  159. Sears ER (1952) Miodivision of univalents in common wheat. Chromosoma 4: 535–550PubMedCrossRefGoogle Scholar
  160. Sears ER (1954) The aneuploids of common wheat. Missouri Agric Exp Stn Res Bull 572: 58 ppGoogle Scholar
  161. Sears ER (1974) The wheats and their relatives. In: King RC (ed) Handbook of genetics, vol2. Plenum, New York, pp 59–91Google Scholar
  162. Shimada T (1981) Haploid plants regenerated from the pollen callus of wheat (Triticum aestivum L.). Jpn J Genet 56: 581–588CrossRefGoogle Scholar
  163. Shimada T, Otani M (1988) Efficiency of potato medium on induction of pollen embryoids in anther culture of Japanese wheat cultivars. Jpn J Breed 38: 212–222Google Scholar
  164. Snape JW, Parker BB, Simpson E, Ainsworth CC, Payne PI, Law CN (1983) The use of irradiated pollen for differential gene transfer in wheat (Triticum aestivum). Theor Appl Genet 65: 103–112CrossRefGoogle Scholar
  165. Snape JW, de Buyser J, Henry Y, Simpson E (1986) A comparison of methods of haploid production in a cross of wheat, Triticum aestivum. Z Pflanzenzücht 96: 320–330Google Scholar
  166. Suarez EY, Favret EA (1986) Aneuploidy as an explanation of high values of phenotypic variability in commercial wheat varieties. Cereal Res Commun 14: 229–236Google Scholar
  167. Sunderland N (1977) Observations on anther culture of ornamental plants. In: Gautheret RJ (ed) La culture des cellules et des tissus des végétaux. Résultats généraux et réalisations pratiques, G. Morel, memorial volume. Masson, Paris, pp 34–56Google Scholar
  168. Szakacs E, Barnabas B (1988) Cytological aspects of in vitro androgenesis in wheat (Triticum aestivum L.) using fluorescent microscopy. Sex Plant Reprod 1: 217–222CrossRefGoogle Scholar
  169. Szakacs E, Kovacs G, Pauk J, Barnabas B (1988) Substitution analysis of callus induction and plant regeneration from anther culture in wheat (Triticum aestivum L.). Plant Cell Rep 7: 127–129CrossRefGoogle Scholar
  170. Tsay HS, Chen LJ, Tseng TH, Lai PC (1982) The culture of rice anthers of japonica X indica crosses. In: Fujiwara A (ed) Plant tissue culture 1982. Maruzen, Tokyo, pp 561–562Google Scholar
  171. Tsay SC, Lin MH (1976) Production of Rice plantlets by anther culture. J Agric Res China 26: 100–112Google Scholar
  172. Tsunewaki K (1963) The transmission of the monosomic condition in a wheat variety, Chinese Spring. II. A critical analysis of nine years’ records. Jpn J Genet 38: 270–281CrossRefGoogle Scholar
  173. Tsunewaki K, Mukai Y, Yamamori Y (1984) The salmon method of haploid production in common wheat. In: Int Symp Genetic manipulation in crops, 22–26 Oct, Peking, p 21Google Scholar
  174. Vagera J, Havranek P, Opatrny Z (1979) Regulation of in vitro androgenesis in tobacco: relationship between concentration of iron ions and kinetin. Biochem Physiol Pflanzen 174: 752–760Google Scholar
  175. Wang CC, Chu CC, Sun CS, Wu SH, Yin KC, Hsu C (1973) The androgenesis in wheat (Triticum aestivum) anthers cultured in vitro. Sci Sin 16: 218–222Google Scholar
  176. Wang CC, Chu ZC, Sun CS, Hsu C, Yin KC, Bi FY (1975) Induction of pollen plants from the anther culture of Triticum vulgare-Agropyrum glaucum hybrid. Acta Genet Sin 2: 71–77Google Scholar
  177. Wang CC, Hu DF, Wang HM, Tang YL (1981) Studies on increasing the frequency of induction of pollen derived callus in wheat. Hereditas 3: 28–29Google Scholar
  178. Wang P, Chen YR (1980) Effects of growth conditions of anther-donor plants on the production of pollen-plants in wheat anther culture. Acta Genet Sin 7: 64–71Google Scholar
  179. Wang X, Hu H (1980) Pollen-derived plants obtained from (Triticale X Triticum aestivum) F, by means of anther culture. Annu Rep Inst Genet Acad Sin, p 76Google Scholar
  180. Wang X, Hu H (1985) The chromosome constitution of plant derived from pollen of hexaploid triticale X common wheat F, hybrids. Theor Appl Genet 70: 92–96Google Scholar
  181. Wei ZM (1982) Pollen callus culture in Triticum aestivum. Theor Appl Genet 63: 71–73CrossRefGoogle Scholar
  182. Winzeler H, Schmid J, Fried PM (1987) Field performance of androgenetic doubled haploid spring wheat lines in comparison with lines selected by the pedigree system. Plant Breed 99: 41–48CrossRefGoogle Scholar
  183. Worland AJ, Law CN (1985) Aneuploidy in semi-dwarf wheat varieties, Euphytica 34: 317–327CrossRefGoogle Scholar
  184. Xu Z, Sunderland N (1981) Glutamine, inositol and conditioning factors in the production of barley pollen callus in vitro. Plant Sci Lett 23: 161–168CrossRefGoogle Scholar
  185. Xue Q, Chen H (1987) Genetic study on disease resistance for rice cultivar of Dan 209 released from anther culture. Acta Genet Sin 14: 349–354Google Scholar
  186. Yan JH, Zhao RZ, Cao JL (1979) Induction of an embryo sac plantlet in Triticum aestivum. J. Shanxi Univ Nat Sci Edn 3 /4: 1–4Google Scholar
  187. Yin D, Wei Q, Yu Q, Wang L (1985) Effects of gamma radiation on wheat pollen development in anther culture. J Agric Sci 1: 17–24Google Scholar
  188. Yin KC, Hsu C, Chu CY, Pi FY, Wang ST, Liu TY, Chu CC, Wang CC, Sun CS (1976) A study of the new cultivar of rice raised by haploid breeding method. Sci Sin 19: 227–242Google Scholar
  189. Zeng J, Ouyang J (1980) The early androgenesis in in vitro wheat anthers under ordinary and low temperature. Acta Genet Sin 7: 165–173Google Scholar
  190. Zeng J, Hu H, Zhang H, Zhang C, Xu Z, Hao S (1982) DNA synthesis of mini-microspore from pollen-derived haploid of Triticum aestivum L. Kexue Tongbao 27: 665–669Google Scholar
  191. Zhang YL, Li DS (1984) Anther culture of monosomics in Triticum aestivum Hereditas 6: 7–10Google Scholar
  192. Zhu Z, Wu H (1979) In vitro production of haploid plantlets from the unpollinated ovaries of Triticum aestivum and Nicotiana tabacum. Acta Genet Sin 6: 181–183Google Scholar
  193. Zhuang J, Jia X (1980a) Studies on the induction of plants from Triticum aestivum X Triticum-Agropyron hybrids. Annu Rep Inst Genet Acad Sin, pp 72–73Google Scholar
  194. ZhuangJ, Jia X (1980b) Studies on the differentiation of pollen calli of wheat. Annu Rep Inst Genet Acad Sin, pp 70–71Google Scholar
  195. Zhuang JJ, Jia X (1983) Increasing differentiation in wheat pollen callus. In: Cell and tissue culture techniques for cereal crop improvement. Science Press, Beijing, p 431Google Scholar
  196. Zhuang J, Jia X, Chen G, Sun S (1985) Factors affecting the induction of pollen plants of intergeneric hybrids of Triticum aestivum X Triticum-Agropyron. Theor Appl Genet 70: 294–299CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Y. Henry
    • 1
  • J. de Buyser
    • 1
  1. 1.C.N.R.S., Laboratoire de Génétique Végétale, URA 115Université Paris XIOrsay, Cedex 05France

Personalised recommendations