Skip to main content

Triticale × Wheat Hybrids

  • Chapter
Wheat

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 13))

  • 470 Accesses

Abstract

Wheat (Triticum aestivum L. em Thell) is the most important temperate cereal crop grown in the world. It is the end product of several thousand years of selection and 100 years or so of applied plant breeding. It is well documented that bread wheat is the result of natural hybridizations between diploid (2n = 2x = 14) and tetraploid (2n = 4x = 28) progenitor species, some of which are themselves important cereals, so that hexaploid wheat (2n = 6x = 42) can be regarded as a tetraploid wheat to which seven pairs of chromosomes from T. tauschii (Coss.) Schmal have been added. The man-made hybrid triticale (× Triticosecale Wittmack), on the other hand, has had a total history of only 100 years and has only been investigated seriously for the last 40 years. As the name implies, triticales are hybrids between hexaploid or tetraploid Triticum species and diploid species of Secale, cereal rye. To some extent, therefore, triticales can be regarded as wheat plants to which rye chromosomes have been added.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Appels R, Dvořák J (1982) The wheat ribosomal DNA spacer region: its structure and variation in populations and among species. Theor Appl Genet 63: 337–348

    Article  CAS  Google Scholar 

  • Appels R, Moran L (1984) Molecular analysis of alien chromatin introduced into wheat. In: Gustafson JP (ed) Gene manipulation and plant improvement. Plenum, New York, pp 529–557

    Chapter  Google Scholar 

  • Appels R, Driscoll C, Peacock WJ (1978) Heterochromatin and highly repeated DNA sequences in rye (Secale cereale). Chromosoma 70: 67–89

    Article  CAS  Google Scholar 

  • Appels R, Dennis ES, Smyth DR, Peacock WJ (1981) Two repeated DNA sequences from the heterochromatic regions of rye (Secale cereale) chromosomes. Chromosoma 70: 265–277

    Article  Google Scholar 

  • Appels R, Gerlach WL, Dennis ES, Swift H, Peacock WJ (1980) Molecular and chromosomal organization of DNA sequences coding for the ribosomal RNAs of cereals. Chromosoma 78: 293–311

    Article  CAS  Google Scholar 

  • Badaev NS, Badaeva ED, Bolsheva NL, Maximov NG, Zelinin AV (1985) Cytogenetic analysis of forms produced by crossing hexaploid triticale with common wheat. Theor Appl Genet 70: 536–541

    Article  Google Scholar 

  • Barber HN, Driscoll CJ, Long PM, Vickery RS (1968) Protein genetics of wheat and homoeologous relationships of chromosomes. Nature (London) 222: 897–898

    Article  Google Scholar 

  • Bietz JA (1987) Genetic and biochemical studies of nonenzymatic endosperm proteins. In: Heyne EG (ed) Wheat and wheat improvement, 2nd edn. Am Soc Agron, Madison, pp 215–241

    Google Scholar 

  • Burke DT, Carle GF, Olson MV (1987) Cloning of large segments of exogenous DNA into yeast by means of artificial chromosome vectors. Science 236: 806–812

    Article  PubMed  CAS  Google Scholar 

  • Darvey NL, Gustafson JP (1975) Identification of rye chromosomes in wheat-rye addition lines and triticale by heterochromatin bands. Crop Sci 15: 239–243

    Article  Google Scholar 

  • Dennis ES, Gerlach WL, Peacock WJ (1980) Identical polypyrimidine-polypurine satellite DNAs in wheat and barley. Heredity 44: 349–366

    Article  CAS  Google Scholar 

  • Dhaliwal AS, Mares DJ, Marshall DR (1987) Effect of 1B/ I R chromosome translocations on milling and quality characteristics of bread wheat. Cereal Chem 64: 72–76

    Google Scholar 

  • Driscoll CJ, Sears ER (1971) Individual addition of the chromosomes of `Imperial’ rye to wheat. Agron Abstr 1971: 6

    Google Scholar 

  • Gerlach WL (1977) N-banded karyotypes of wheat species. Chromosoma 62: 49–56

    Article  Google Scholar 

  • Gerlach W L, Bedbrook JR (1979) Cloning and characterisation of ribosomal RNA genes from wheat and barley. Nucleic Acids Res 7: 1869–1885

    Article  PubMed  CAS  Google Scholar 

  • Gerlach WL, Peacock WJ (1980) Chromosomal locations of highly repeated DNA sequences in wheat. Heredity 44: 269–276

    Article  CAS  Google Scholar 

  • Gerlach WL, Appels R, Dennis ES, Peacock WJ (1979) Evolution and analysis of wheat genomes using highly repeated DNA sequences. In: Ramanujam S (ed) Proc 5th Int Wheat Genet Symp, Indian Agric Res Inst, New Delhi, pp 81–91

    Google Scholar 

  • Gill BS (1987) Chromosome banding methods, standard chromosome band nomenclature, and applications in cytogenetic analysis. In: Heyne EG (ed) Wheat and wheat improvement, 2nd edn. Am Soc Agron, Madison, pp 243–254

    Google Scholar 

  • Gill BS, Kimber G (1974a) The Giemsa C-banded karyotype of rye. Proc Natl Acad Sci USA 71: 1247–1249

    Article  PubMed  CAS  Google Scholar 

  • Gill BS, Kimber G (1974b) Giemsa C-banding and the evolution of wheat. Proc Natl Acad Sci USA 71: 4086–4090

    Article  PubMed  CAS  Google Scholar 

  • Graham RD (1978) Tolerance of Triticale, wheat and rye to copper deficiency. Nature (London) 271: 542–543

    Article  CAS  Google Scholar 

  • Gupta PK, Priyadarshan PM (1982) Triticale: present status and future prospects. Adv Genet 21: 255–345

    Article  Google Scholar 

  • Gustafson JP, Zillinsky FJ (1973) Identification of D-genome chromosomes from hexaploid wheat in a 42-chromosome triticale. In: Sears ER, Sears LMS (eds) Proc 4th Int Wheat Genet Symp, Agric Exp Stn, Univ Missouri, pp 225–231

    Google Scholar 

  • Hart GE (1987) Genetic and biochemical studies of enzymes. In: Heyne EG (ed) Wheat and wheat improvement, 2nd edn. Am Soc Agron, Madison, pp 199–214

    Google Scholar 

  • Helentjaris T, Slocum M, Wright S, Schaefer A, Nienhuis J (1986) Construction of genetic linkage maps in maize and tomato using restriction fragment length polymorphisms. Theor Appl Genet 72: 761–769

    Article  CAS  Google Scholar 

  • Hutchinson J, Lonsdale DM (1982) The chromosomal distribution of cloned highly repetitive sequences from hexaploid wheat. Heredity 48: 371–376

    Article  CAS  Google Scholar 

  • Hutchinson J, Abbott A, O’Dell M, Flavell RB (1985) A rapid screening technique for the detection of repeated DNA sequences in plant tissues. Theor Appl Genet 69: 329–333

    Article  CAS  Google Scholar 

  • Jewell DC (1979) Chromosome banding in Triticum aestivum cv. Chinese Spring and Aegilops variabilis. Chromosoma 71: 129–134

    Article  Google Scholar 

  • Jones JDG, Flavell RB (1982) The mapping of highly-repeated DNA families and their relationship to C-bands in chromosomes of Secale cereale. Chromosoma 86: 595–612

    Article  Google Scholar 

  • Jouve N, Giorgi B (1986) Analysis of induced homoeologous pairing in hybrids between 6x triticale phl mutant and Triticum aestivum L. Can J Genet Cytol 28: 696–700

    Google Scholar 

  • Koebner RMD, Shepherd KW (1986) Controlled introgression to wheat of genes from rye chromosome arm 1 RS by induction of allosyndesis. 1. Isolation of recombinants. Theor Appl Genet 73: 197–208

    Google Scholar 

  • Koebner RMD, Appels R, Shepherd KW (1986) Controlled introgression to wheat of genes from rye chromosome arm I RS by induction of allosyndesis. 2. Characterisation of recombinants. Theor Appl Genet 73: 209–217

    Google Scholar 

  • Kreis M, Williamson MS, Shewry PR, Sharp P, Gale MD (1988) Identification of a second locus encoding β-amylase on chromosome 2 of barley. Genet Res 51: 13–20

    Article  CAS  Google Scholar 

  • Landry BS, Kesseli RV, Farrara B, Michelmore RW (1987a) A genetic map of lettuce (Lactuca sativa L.) with restriction fragment length polymorphism, isozyme, disease resistance and morphological markers. Genetics 116: 331–337

    PubMed  CAS  Google Scholar 

  • Landry BS, Kesseli R, Hei Leung, Michelmore RW (1987b) Comparison of restriction endonucleases and sources of probes for their efficiency in detecting restriction fragment length polymorphisms in lettuce (Lactuca sativa L.). Theor Appl Genet 74: 646–653

    Article  CAS  Google Scholar 

  • Lapitan NLV, Sears RG, Rayburn AL, Gill BS (1986) Wheat-rye translocations — detection of chromosome breakpoints by in situ hybridization with a biotin-labeled DNA probe. J Hered 77: 415–419

    Google Scholar 

  • Lukaszewski AJ, Gustafson JP (1983) Translocations and modifications of chromosomes in triticale × wheat hybrids. Theor Appl Genet 64: 239–248

    Article  Google Scholar 

  • Lukaszewski AJ, Gustafson JP (1984) The effect of rye chromosomes on heading date of triticale × wheat hybrids. Z Pflanzenzucht 93: 246–250

    Google Scholar 

  • Lukaszewski AJ, Gustafson JP, Apolinarska B (1982) Transmission of chromosomes through the eggs and pollen of triticale × wheat F1 hybrids. Theor Appl Genet 63: 49–55

    Article  Google Scholar 

  • Maniatis T, Jeffrey A, Kleid DG (1982) Molecular cloning, a laboratory manual. Cold Spring Harbor Lab, New York

    Google Scholar 

  • May CE (1982) Triticales in New South Wales. Agric Gaz NSW 92: 28–31

    Google Scholar 

  • May CE (1983) Triticale × wheat hybrids and the introduction of speckled leaf blotch resistance to wheat. In: Sakamoto S (ed) Proc 6th Int Wheat Genet Symp, Plant Germplasm Inst, Kyoto Univ, pp 175–179

    Google Scholar 

  • May CE, Appels R (1980) Rye chromosome translocations in hexaploid wheat: a re-evaluation of the loss of heterochromatin from rye chromosomes. Theor Appl Genet 56: 17–23

    Article  Google Scholar 

  • May CE, Appels R (1982) The inheritance of rye chromosomes in early generations of triticale × wheat hybrids. Can J Genet Cytol 24: 285–291

    Google Scholar 

  • May CE, Appels R (1987a) The molecular genetics of wheat: toward an understanding of 16 billion base pairs of DNA. In: Heyne EG (ed) Wheat and wheat improvement, 2nd edn. Am Soc Agron, Madison, pp 165–198

    Google Scholar 

  • May CE, Appels R (1987b) Variability and genetics of spacer DNA sequences between the ribosomal-RNA genes of hexaploid wheat (Triticum aestivum). Theor Appl Genet 74: 617–624

    Article  CAS  Google Scholar 

  • May CE, Appels R (1988) Allelism of the nucleolar organizer regions of hexaploid wheat. In: Miller TE, Koebner RMD (eds) Proc 7th Int Wheat Genet Symp, Inst Plant Sci Res, Cambridge UK, pp 577–583

    Google Scholar 

  • May CE, Reddy P, Clarke BC, Appels R (1990) Recent advances in analysing chromosome structure in cereals and their impact on breeding programmes. In: Khanna KR (ed) Biochemical aspects of plant improvement. CRC, Boca Raton, Fla (in press)

    Google Scholar 

  • Merker A (1982) “V eery” — a CIMMYT spring wheat with a 1B/ 1R chromosome translocation. Cereal Res Commun 10:105–106

    Google Scholar 

  • Merker A (1984) The rye genome in wheat breeding. Hereditas 100: 183–191

    Article  Google Scholar 

  • Pilch J (1981) Analysis of the rye chromosome constitution and the amount of telomeric heterochromatin in the widely and narrowly adapted hexaploid triticales. Theor Appl Genet 60: 145–149

    Article  Google Scholar 

  • Rayburn AL, Gill BS (1985) Use of biotin-labeled probes to map specific DNA sequences on wheat chromosomes. J Hered 77: 415–419

    Google Scholar 

  • Sanchez-Monge E, Sanchez-Monge E Jr (1977) Meiotic pairing in wheat-triticale hybrids. Z Pflanzenzücht79: 96–104

    Google Scholar 

  • Schapova AI, Potapova TA, Kravtsova LA, Numerova OM (1984) Karyotype stabilization in inter-generic hybrids of the subtribe Triticinae. 1. The effects of genome structure. Theor Appl Genet 68: 289–296

    Google Scholar 

  • Seal AG, Bennett MD (1981) The rye genome in winter hexaploid triticales. Can J Genet Cytol 23: 647–653

    Google Scholar 

  • Sears ER (1954) The aneuploids of common wheat. Missouri Agric Exp Stn Res Bull 572

    Google Scholar 

  • Sears ER (1977) An induced mutant with homoeologous pairing in common wheat. Can J Genet Cytol 19: 585–593

    Google Scholar 

  • Sharp PJ, Kreis M, Shewry PR, Gale MD (1988) Location of β-amylase sequences in wheat and its relatives. Theor Appl Genet 75: 286–290

    Article  CAS  Google Scholar 

  • Shepherd KW (1968) Chromosomal control of endosperm proteins in wheat and rye. In: Finlay KW, Shepherd KW (eds) Proc 3rd Int Wheat Genet Symp, Aust Acad Sci, Canberra, pp 86–96

    Google Scholar 

  • Shigenaga S, Nakazaki T, Yamagata H (1983) Transmission of R- and D-genome chromosomes in the progenies of triticale-wheat hybrids. In Sakamoto S (ed) Proc 6th Int Wheat Genet Symp, Plant Germplasm Inst, Kyoto Univ, pp 915–918

    Google Scholar 

  • Singh RJ, Robbelen G (1975) Comparison of somatic Giemsa banding pattern in several species of rye. Z Pflanzenzücht75: 270–285

    Google Scholar 

  • Slootmaker LAJ (1974) Tolerance to high soil acidity in wheat-related species, rye and triticale. Euphytica 23: 505–513

    Article  Google Scholar 

  • Southern E (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98: 503–517

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Hu H (1985) The chromosome constitution of plants derived from pollen of hexaploid triticale × common wheat F, hybrids. Theor Appl Genet 70: 92–96

    Google Scholar 

  • Zeller F (1973) 1B/1 R wheat/rye chromosome sustitutions and translocations. In: Sears ER, Sears LMS (eds) Proc 4th Int Wheat Genet Symp, Agric Exp Stn, Univ Missouri, pp 209–221

    Google Scholar 

  • Zeller F, Gunzel G, Fishbeck G (1982) Veränderungen der Backeigenschaften des Weizens durch die Weizen-Roggen-Chromosomentranslokation 1B/1R. Getreide Mehl Brot 36: 141–144

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

May, C.E. (1990). Triticale × Wheat Hybrids. In: Bajaj, Y.P.S. (eds) Wheat. Biotechnology in Agriculture and Forestry, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10933-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10933-5_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08081-4

  • Online ISBN: 978-3-662-10933-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics