Advertisement

Wheat pp 167-217 | Cite as

Wheat × Thinopyrum Hybrids

  • R. de V.Pienaar
Part of the Biotechnology in Agriculture and Forestry book series (AGRICULTURE, volume 13)

Abstract

The perennial grasses of the Poaceae tribe Triticeae have broadened the genetic base of wheat (Triticum L.) since the first hybrids were made during the early 1930’s (Tsitsin 1962, 1975). Only a few species were involved in these early hybridization programs, but as advances in hybridization techniques (Kruse 1967, 1974), embryo rescue (Rommel 1958), chromosome doubling (Blakeslee and Avery 1937; Gavaudan and Gavaudan 1937), control of chromosome pairing (Riley and Chapman 1958; Wall et al. 1971; Riley 1974; Sears 1976), and chromosome manipulations (Morris and Sears 1967; Riley et al. 1968; Sears 1981,1983; Riley and Law 1984; Gale and Miller 1987; Knott 1987) were made, more species became utilized in the wide crosses.

Keywords

Rust Resistance Stem Rust Resistance Triploid Hybrid Wheat Streak Mosaic Virus Homoeologous Pairing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alonso LC, Kimber G (1980) A hybrid between diploid Agropyron junceum and Triticum aestivum. Cereal Res Commun 8: 355–358Google Scholar
  2. Alonso LC, Kimber G (1981) The analysis of meiosis in hybrids. II. Triploid hybrids. Can J Genet Cytol 23: 221–234Google Scholar
  3. Appels R, Reddy P, McIntyre CL, Moran LB, Frankel OH, Clarke BC (1989) The molecular-cytogenetic analysis of grasses and its application to studying relationships among species of the Triticeae. Genome 31: 122–133PubMedCrossRefGoogle Scholar
  4. Armstrong JM (1936) Hybridization of Triticum and A gropyron. I. Crossing results and description of the first generation. Can J Res 14-C: 190–202Google Scholar
  5. Armstrong JM, McLennan HA (1944) Amphiploidy in Triticum-Agropyron hybrids. Sci Agric 24: 285–298Google Scholar
  6. Bajaj YPS, Gosal SS (1986) Biotechnology of wheat improvement. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 2. Crops I. Springer, Berlin Heidelberg New York Tokyo, pp 3–38Google Scholar
  7. Bakshi JS, Schlehuber AM (1959) Identification of a substituted chromosome pair in a Triticum- Agropyron line. Proc Okl Acad Sci 39: 16–21Google Scholar
  8. Barkworth ME, Dewey DR (1985) Genomically based genera in the perennial Triticeae of North America: identification and membership. Am J Bot 72: 767–776CrossRefGoogle Scholar
  9. Baum BR, Estes JR, Gupta PK (1987) Assessment of the genomic system of classification in the Triticeae. Am J Bot 79: 1388–1395CrossRefGoogle Scholar
  10. Blakeslee AF, Avery AG (1937) Methods of inducing doubling of chromosomes in plants by treatment with colchicine. J Heredity 28: 393–411Google Scholar
  11. Brajcich P, Pfeiffer W, Autrique E (1986) Durum wheat. Names; parentage; pedigrees and origins. CIMMYT, Mexico, DFGoogle Scholar
  12. Brakke MK (1987) Virus diseases of wheat. In: Heyne EG (ed) Wheat and wheat improvement. Second Ed Am Soc Agron, Crop Sci Soc Am, Soil Sci Soc Am, Madison, WI, pp 585–624Google Scholar
  13. Brettell RIS, Banks PM, Cauderon Y, Chen X, Cheng ZM, Larkin PJ, Waterhouse PM (1988) A single wheatgrass chromosome reduces the concentration of barley yellow dwarf virus in wheat. Ann Appl Biol 113: 599–603CrossRefGoogle Scholar
  14. Caldwell RM, Schafer JF, Compton LE, Patterson FL (1956) Resistencia a la roya de la hoja derivada de Agropyron elongatum. (Leaf rust resistance derived from A. elongatum) In: Rep 3rd Int Conf on wheat Rust, Mexico, DF, pp 102–104Google Scholar
  15. Cauderon Y (1958) Etude cytogénétique des Agropyron français et de leurs hybrides avec les Blés. Ann Amél Plantes 58: 389–567Google Scholar
  16. Cauderon Y (1966a) Genome analysis in the genus Agropyron. In: Proc 2nd Int Wheat genetics Symp, Lund. Hereditas (Suppl) 2: 218–234Google Scholar
  17. Cauderon Y (1966b) Etude cytogénétique de l’évolution du matériel issu du croisement entre Triticum aestivum et Agropyron intermedium. I. Création de types d’addition stables. Ann Amél Plantes 16: 43–70Google Scholar
  18. Cauderon Y (1977) Alloploidy. In: Interspecific hybridization in plant breeding. Proc 8th Eucarpia Congr, Madrid, pp 131–143Google Scholar
  19. Cauderon Y (1979) Use ofAgropyron species for wheat improvement. In: Proc Conf Broadening genetic base of crops. Pudoc, Wageningen, pp 175–186Google Scholar
  20. Cauderon Y, Ryan G (1974) Aegilops speltoides promotion of homoeologous pairing in one Triticum aestivum X Agropyron intermedium derivative. Wheat Inf Sery 39: 1–5Google Scholar
  21. Cauderon Y, Saigne R (1961) New interspecific and intergeneric hybrids involving Agropyron. Wheat Inf Sery 12: 13–14Google Scholar
  22. Cauderon Y, Saigne R, Dauge M (1973) The resistance of wheat rusts of Agropyron intermedium and its use in wheat improvement. In: Proc 4th Int wheat genetics Symp, Columbia, MO, pp 401–407Google Scholar
  23. Cauderon Y, Autran JC, Joudrier P, Kobrehel K (1978) Identification de chromosomes d’Agropyron intermedium impliqués dans la synthèse des gliadines, des ß-amylases et des péroxidases à l’aide de lignées d’addition Ble X Agropyron. Ann Amél Plantes 28: 257–267Google Scholar
  24. Charpentier A, Feldman M, Cauderon Y (1986a) Chromosomal pairing at meiosis of F, hybrid and backcross derivatives of Triticum aestivum X hexaploid Agropyron junceum. Can J Genet Cytol 28: 1–6Google Scholar
  25. Charpentier A, Feldman M, Cauderon Y (1986b) Genetic control of meiotic pairing in tetraploid Agropyron elongatum. I. Pattern of pairing in natural and induced tetraploids and in F, triploid hybrids. Can J Genet Cytol 28: 783–788Google Scholar
  26. Charpentier A, Cauderon Y, Feldman M (1988a) Control of chromosome pairing in Agropyron elongatum. In: Proc 7th Wheat genetics Symp, Cambridge, pp 231–236Google Scholar
  27. Charpentier A, Feldman M, Cauderon Y (1988b) The effect of different doses of Phl on chromosome pairing in hybrids between tetraploid Agropyron elongatum and common wheat. Genome 30: 974–977CrossRefGoogle Scholar
  28. Charpentier A, Feldman M, Cauderon Y (1988c) The effect of different Agropyron elongatumchromosomes on pairing in Agropyron — common wheat hybrids. Genome 30: 978–983CrossRefGoogle Scholar
  29. Chenicek KJ, Hart GE (1987) Identification and chromosomal locations of acontinase gene loci in Triticeae species. Theor Appl Genet 74: 261–268CrossRefGoogle Scholar
  30. Chueca MC, Cauderon Y (1977) Induction d’apariement homeologues entre les chromosome du Blétendre et un télosome d’Agropyron intermedium par croisement avec des Aegilops. Ann Amél Plantes 27: 135–150Google Scholar
  31. Cocking EC, Davey MR (1987) Gene transfer in cereals. Science 236: 1259–1262PubMedCrossRefGoogle Scholar
  32. Comecau A, Fedak G, St-Pierre CA, Thieriault C (1985) Intergeneric hybrids between Triticum aestivum and species of Agropyron and Elymus. Cereal Res Commun 13: 149–153Google Scholar
  33. de la Pena A, Lörz H, Schell J (1987) Transgenic rye plants obtained by injecting DNA into young floral tillers. Nature (London) 325: 274–276CrossRefGoogle Scholar
  34. Dewey DR (1962) The genome structure of intermediate wheatgrass. J Hered 53: 282–290Google Scholar
  35. Dewey DR (1963a) Cytology and morphology of a synthetic Agropyron trichophorum X Agropyron desertorum hybrid. Am J Bot 50: 552–562CrossRefGoogle Scholar
  36. Dewey DR (1983b) Morphology and cytology of synthetic hybrids of Agropyron trichophorum X Agropyron cristatum. Am J Bot 50: 1028–1034CrossRefGoogle Scholar
  37. Dewey DR (1964) Synthetic hybrids of New World and Old World agropyrons. I. TetraploidAgropyron spicatum x diploid Agropyron cristatum. Am J Bot 51: 763–769CrossRefGoogle Scholar
  38. Dewey DR (1967) Synthetic hybrids of New World and Old World agropyrons. IV.TetraploidAgropyron spicatum F. inerme x tetraploid Agropyron desertorum. Am J Bot 54: 403–409CrossRefGoogle Scholar
  39. Dewey DR (1975) Genome relationships of diploid Agropyron libanoticum with diploid and tetraploid Agropyron stipifolium. Bot Gaz 136: 116–121CrossRefGoogle Scholar
  40. Dewey DR (1978) Morphology, cytology and fertility of Agropyron podperae and its hybrids with A. intermedium. Crop Sci 18: 315–320CrossRefGoogle Scholar
  41. Dewey DR (1980) Hybrids and induced amphiploids involving Agropyron curvifolium, A. repens and A. desertorum. Crop Sci 20: 473–478CrossRefGoogle Scholar
  42. Dewey DR (1984) The genomic system of classification as a guide to intergeneric hybridization in the perennial Triticeae. In: Gustafson JP (ed) Gene manipulation in plant improvement. Plenum, New York, pp 209–279CrossRefGoogle Scholar
  43. Dewey DR, Pendse PC (1967) Cytogenetics of crested wheatgrass triploids. Crop Sci 7:345–349 Driscoll CJ (1981) New approaches to wheat breeding. In: Evans LT, Peacock WJ (eds) Wheat science-today and tomorrow. Univ Press, Cambridge, pp 97–106Google Scholar
  44. Dvorak J (1971) Hybrids between a diploid Agropyron elongatum and Aegilops squarrosa. Can J Genet Cytol 21: 243–254Google Scholar
  45. Dvorak J (1980) Homoeology between Agropyron elongatum chromosomes and T. aestivum chromosomes. Can J Genet Cytol 22: 237–259Google Scholar
  46. Dvorak J (198la) Chromosome differentiation in polyploid species of Elytrigia,with special reference to the evolution of diploid-like chromosome pairing in polyploid species. Can J Genet Cytol 23:287–303Google Scholar
  47. Dvorak J (198 lb) Genome relationships among E. stipfolia, E. elongata 4x, E. caespitosa, E. intermedia and E. elongata 10x. Can J Genet Cytol 23:481–492Google Scholar
  48. Dvorak J (1987) Chromosomal distribution of genes in diploid Elytrigia elongata that promote or suppress pairing of wheat homoeologous chromosomes. Genome 29: 34–40CrossRefGoogle Scholar
  49. Dvorak J, Chen KC (1984) Phylogenetic relationships between chromosomes of wheat and chromosome 2E of Elytrigia elongata. Can J Genet Cytol 26: 128–132Google Scholar
  50. Dvorak J, Knott DR (1974) Disomic and diteleosomic additions of diploid Agropyron elongatum chromosomes to Triticum aestivum. Can J Genet Cytol 16: 399–417Google Scholar
  51. Dvorak J, Ross K (1986) Expression of tolerance of Na`, K*, Mg’, Cl-and SO ions and sea water in the amphiploid of Triticum aestivum X Elytrigia elongata. Crop Sci 26: 658–660CrossRefGoogle Scholar
  52. Dvorak J, Sosulski FW (1974) Effects of additions and substitutions of Agropyron elongatum chromosomes on quantitative characters in wheat. Can J Genet Cytol 16: 627–637Google Scholar
  53. Dvorak J, McGuire PE, Mendlinger S (1984) Inferred chromosome morphology of the ancestral genome of Triticum. Plant Syst Evol 144: 209–220CrossRefGoogle Scholar
  54. Dvorak J, Ross K, Mendlinger S (1985) Transfer of salt tolerance from Elytrigia pontica (Podp.) Holub to wheat by the addition of an incomplete Elytrigia genome. Crop Sci 25: 306–309CrossRefGoogle Scholar
  55. Dvorak J, Kasarda DD, Dietler MD, Lew EJL, Anderson OD, Litts J, Shewry PR (1986) Chromosomal location of seed storage protein genes in the genome of Elytrigia elongata. Can J Genet Cytol 28: 818–830Google Scholar
  56. Eizenga GC (1987) Locating the Agropyron segment in wheat-A gropyron transfer no. 12. Genome 29: 365–366CrossRefGoogle Scholar
  57. Elliot FC (1957) X-ray induced translocation of Agropyron stem rust resistance to common wheat. J Hered 48: 77–81Google Scholar
  58. Endo TR, Gill BS (1984) The heterochromatin distribution and genome evolution in diploid species of Elymus and Agropyron. Can J Genet Cytol 26: 669–678Google Scholar
  59. Espinase A, Kimber G (1981) The analysis of meiosis in hybrids. IV. Pentaploid hybrids. Can J Genet Cytol 23: 623–638Google Scholar
  60. Evans LE (1962) Karyotype analysis and chromosome designations for diploid Agropyron elongatum (Host) P.B. Can J Genet Cytol 4: 267–271Google Scholar
  61. Fatih AMB (1983) Analysis of the breeding potential of wheat-Agropyron and wheat-Elymus derivatives. I. Agronomic and quality characteristics. Hereditas 98: 287–295PubMedCrossRefGoogle Scholar
  62. Fatih AMB (1986) Genotypic and phenotypic associations of grain yield, grain protein and yield related characteristics in wheat-Agropyron derivatives. Hereditas 105: 141–153CrossRefGoogle Scholar
  63. Fedak G (1985a) Intergeneric hybrids between Hordeum vulgare and Agropyron intermedium var. trichophorum. Z Pflanzenzucht 95: 45–49Google Scholar
  64. Fedak G (1985b) Alien species as sources of physiological traits for wheat improvement. Euphytica 34: 673–680CrossRefGoogle Scholar
  65. Fedak G, Armstrong KC, Handyside R (1988) Use of callus cultures to induce alien chromosomeGoogle Scholar
  66. translocations in wheat. XVI Int Congr Genet, Toronto, Abstr 35.37.8 of poster presentation Feldman M (1983) Gene transfer from wild species into cultivated plants. Acta Biol Yug Genet 15: 145–161Google Scholar
  67. Forster BP, Miller TE (1985) A 513 deficient hybrid between Triticum aestivum and Agropyron junceum. Cereal Res Commun 13: 93–95Google Scholar
  68. Forster BP, Gorham J, Miller TE (1987a) Salt tolerance of an amphiploid between Triticumaestivum and Agropyron junceum. Plant Breed 98: 1–15CrossRefGoogle Scholar
  69. Forster BP, Reader SM, Forsyth SA, Koebner RMD, Miller TE, Gale MD, Cauderon Y (1987b) An assessment of the homoeologyof six Agropyron intermedium chromosomes added to wheat. Genet Res 50: 91–97CrossRefGoogle Scholar
  70. Forster BP, Miller TE, Law CN (1988a) Salt tolerance of two wheat-Agropyron junceum disomic addition lines. Genome 30: 559–564Google Scholar
  71. Forster BP, Miller TE, Law CN (1988b) The potential for transferring genes conferring salt tolerance from Thinopyrum bessarabicum into wheat. In: Proc 7th Int Wheat genetics Symp, Cambridge, pp 267–270Google Scholar
  72. Gale MD, Miller TE (1987) The introduction of alien genetic variation into wheat. In: Lupton FGH (ed) Wheat breeding: its scientific basis. Chapman and Hall, London, pp 173–210Google Scholar
  73. Gale MD, Sharp PJ, Chao S, Law CN (1989) Applications of genetic markers in cytogenetic manipulations of wheat genomes. Genome 31: 137–142CrossRefGoogle Scholar
  74. Gasser CS, Fraley R (1989) Genetically engineering plants for crop improvement. Science 244: 1293–1299PubMedCrossRefGoogle Scholar
  75. Gaul H (1953) Genomanalytische Untersuchungen bei Triticum X Agropyron intermedium unter Berucksichtingung von Secale cereale X A. intermedium. Z Indukt Abstamm Vererb 85: 505–546Google Scholar
  76. Gavaudan P, Gavaudan N (1937) Modifications numériques et morphlogiques des chromosomes induites chez les végétaux por l’action de la colchicine. C R Soc Biol Paris 126: 985–988Google Scholar
  77. Giorgi B (1978) A homoeologous pairing mutant isolated in Triticum durum cv. Cappelli. Mutat Breed Newsl 11: 4–5Google Scholar
  78. Goodman RM, Hauptli H, Crossway A, Knauf VC (1987) Gene transfer in crop improvement. Science 236: 48–54PubMedCrossRefGoogle Scholar
  79. Gorham J, Wyn Jones RG (1989) Utilization of Triticeae for improving salt tolerance in wheat. In: Proc Int Symp Evaluation and utilization of genetic resources in wheat improvement. ICARDA, Aleppo (in press)Google Scholar
  80. Gorham J, McDonnell E, Budrewicz E, Wyn Jones RG (1985) Salt tolerance in the Triticeae: growth and solute accumulation in leaves of Thinopyrum bessarabicum. J Exp Bot 36: 1021–1031CrossRefGoogle Scholar
  81. Gorham J, Budrewicz E, McDonnell E, Wyn Jones RG (1986a) Salt tolerance in the Triticeae: salinity-induced changes in the leaf solute composition of some perennial Triticeae. J Exp Bot 37: 1114–1128CrossRefGoogle Scholar
  82. Gorham J, Forster BP, Budrewicz E, Wyn Jones RG, Miller TE, Law CN (1986b) Salt tolerance in the Triticeae: solute accumulation and distribution in an amphiploid derived from Triticum aestivum cv. Chinese Spring and Thinopyrum bessarabicum. J Exp Bot 37: 1435–1449CrossRefGoogle Scholar
  83. Gould F (1988) Evolutionary biology and genetically engineered crops. Bio Science 38: 26–33Google Scholar
  84. Gulick P, Dvorak J (1987) Gene induction and repression by salt treatment in roots of the salinity sensitive Chinese Spring x Elytrigia elongata amphiploid. Proc Natl Acad Sci USA 84: 99–103PubMedCrossRefGoogle Scholar
  85. Gulick PJ, Edge M, Ross K, Dvofâk J (1987) Genetic and molecular structure of salt tolerance of Elytrigia elongata as expressed in bread wheat. J Cell Biochem Suppl 11B: 36Google Scholar
  86. Gupta PK, Baum BR (1989) Stable classification and nomendature in the Triticeae: desirability, limitations and prospects. Euphytica 41: 191–197Google Scholar
  87. Gupta PK, Fedak G (1986a) Intergeneric hybrids between x Triticosecalecv. Welsh (2n = 42) and three genotypes of Agropyrum intermedium (2n =42). Can J Genet Cytol 28: 176–179Google Scholar
  88. Gupta PK, Fedak G (1986b) Hybrids of bread wheat (Triticum aestivum) with Thinopyrum scirpeum (4x) and Thinopyrum junceum (6x). Z Pflanzenzücht 97: 107–111Google Scholar
  89. Gupta PK, Fedak G (1988) Meiotic analysis of callus regenerated plants from a cross between Triticum aestivum (2n = 42) and Agropyron elongatum (2n = 70). In: Proc 7th Int Wheat genetics Symp, Cambridge, pp 293–296 -Google Scholar
  90. Gustafson JP, Dera AR (1989) Alien gene manipulation and expression in wheat. Genome 31: 134–136CrossRefGoogle Scholar
  91. Hart GE (1987) Genetic and biochemical studies of enzymes. In: Heyne EG (ed) Wheat and wheat improvement. Second ed Am Soc Agron, Crop Sci Soc Am, Soil Sci Soc Am, Madison, WI, pp 199–214Google Scholar
  92. Hart GE, Tuleen NE (1983) Chromosomal location of eleven Elytrigia elongata ( Agropyron elon-gatum) isozyme structural genes. Genet Res 41: 181–202CrossRefGoogle Scholar
  93. Hart GE, McMillin DE, Sears ER (1976) Determination of the chromosonal location of a glutamate oxaloacetate transaminase structural gene using Triticum-Agropyron translocations. Genetics 83: 49–61PubMedGoogle Scholar
  94. Heneen WK (1963) Meiosis in the interspecific hybrid Elymus farctus x E. repens (= Agropyronjunceum X A. repens). Hereditas 49: 107–118CrossRefGoogle Scholar
  95. Heneen WK (1977) Chromosomal polymorphism in isolated populations of Elymus (Agropyron) in the Aegean. III. Elymus diae. Hereditas 86: 225–236CrossRefGoogle Scholar
  96. Heneen WK, Runemark H (1972) Cytology of the Elymus (Agropyron) elongatus complex. Hereditas 70: 155–164CrossRefGoogle Scholar
  97. Hsiao C,Wang RRC, Dewey DR (1986) Karyotype analysis and genome relationships of 22 diploid species in the tribe Triticeae. Can J Genet Cytol 28: 109–120Google Scholar
  98. Jaaska V (1972) Enzyme variability and phylogenetic relationships in the grass genera A gropyron Gaertn. and Elymus L. I. Agropyron intermedium (Host) Beauv. and Agropyron elongatum (Host) Beauv. Proc Acad Sci Estonian SSR 21: 207–218Google Scholar
  99. Jackson RG, Casey J (1982) Cytogenetic analyses of autoploids: Models and methods for triploid to octoploids. Am J Bot 69: 487–501Google Scholar
  100. Jauhar PP (1988a) A reassessment of genome relationships between Thinopyrum bessarabicum and T. elongatum of the Triticeae. Genome 30: 903–914CrossRefGoogle Scholar
  101. Jauhar PP (1988b) Meiotic and reproductive stability of Thinopyrum bessarabicum x Th. elongatum amphiploids: Their potential as sources of genes for wheat improvement. In: Proc 7th Int Wheat genetics Symp, Cambridge, pp 323–328Google Scholar
  102. Jauhar PP, Crane CF (1989) An evaluation of Baum et al.’s assessment of the genomic system of classification in the Triticeae. Am J Bot 76: 571–576CrossRefGoogle Scholar
  103. Jenkins BC, Mochizuki A (1957) A new amphiploid from a cross between Triticum durum and Agropyron elongatum (2n = 14). Wheat Inf Sery 5: 15Google Scholar
  104. Johnson R (1966) The substitution of a chromosome from Agropyron elongatum for chromosomes of hexaploid wheat. Can J Genet Cytol 8: 279–292Google Scholar
  105. Johnson R, Kimber G (1967) Homoeologous pairing of a chromosome from Agropyron elongatum with those of Triticum aestivum and Aegilops speltoides. Genet Res 10: 63–71CrossRefGoogle Scholar
  106. Joshi BC (1986) Cytogenetics of wheat. India J Genet (Suppl) 46: 72–79Google Scholar
  107. Kellogg E (1989) Comments on genomic genera in the Triticeae (Poaceae). Am J Bot 76: 796–805CrossRefGoogle Scholar
  108. Kerguelen M (1975) Les Gramineae (Poaceae) de la flore française. Essai de mise au point taxonomique et nomenclature. Lejeunia N S 75: 1–344Google Scholar
  109. Kibirige-Sebunya I, Knott DR (1983) Transfer of stem rust resistance to wheat from an Agropyron chromosome having a gametocidal effect. Can J Genet Cytol 25: 215–221Google Scholar
  110. Kihara H (1954) Considerations on the evolution and disribution of Aegilops species based on the analyser-method. Cytologia 19: 336–357CrossRefGoogle Scholar
  111. Kihara H (1963) Interspecific relationships in Triticum and Aegilops. Seiken Ziho 15: 1–12Google Scholar
  112. Kihara H (1975) Origin of cultivated plants with special reference to wheat. Seiken Ziho 25: 1–24Google Scholar
  113. Kihara H (1982) Wheat studies — retrospect and prospects. Elsevier, AmsterdamGoogle Scholar
  114. Kihara H, Nishiyama I (1930) Genomanalyse bei Triticum and Aegilops. I. Genomaffinitäten in tri-, tetra-and pentaploiden Weizenbastarden. Cytologia 1: 270–284Google Scholar
  115. Kimber G (1983) Genome analysis in the genus Triticum. In: Proc 6th.Int Wheat genetics Symp, Kyoto, pp 23–28Google Scholar
  116. Kimber G (1984a) Evolutionary relationships and their influence on plant breeding. In: Gustafson JP (ed) Gene manipulation in plant improvement. Plenum, New York, pp 281–293CrossRefGoogle Scholar
  117. Kimber G (1984b) Technique selection for the introduction of alien variation in wheat. Z Pflanzenzücht 92: 215–221Google Scholar
  118. Kimber G, Abu Bakar M (1979) Wheat hybrid information system. Cereal Res Commun 7: 257–280Google Scholar
  119. Kimber G, Alonso LC (1981) The analysis of meiosis in hybrids. III. Tetraploid hybrids. Can J Genet Cytol 23: 235–254Google Scholar
  120. Kimber G, Feldman M (1987) Wild wheat: an introduction. Coll Agric Univ Missouri, Columbia, MO, Spec Rep 353Google Scholar
  121. Kimber G, Hulse MM (1978) The analysis of chromosome pairing in hybrids and the evolution of wheat. In: Proc 5th Int Wheat genetics Symp, New Delhi, pp 63–72Google Scholar
  122. Kimber G, Riley R (1963) Haploid angiosperms. Bot Rev 29: 480–531CrossRefGoogle Scholar
  123. Knott DR (1958) The inheritance in wheat of a blue endosperm colour derived from Agropyron elongatum. Can J Bot 3: 572–574Google Scholar
  124. Knott DR (1961) The inheritance of rust resistance. VI. The transfer of stem rust resistance from Agropyron elongatum to common wheat. Can J Plant Sci 41: 109–143CrossRefGoogle Scholar
  125. Knott DR (1964) The effect on wheat of an Agropyron chromosome carrying rust resistance. Can J Genet Cytol 6: 500–507Google Scholar
  126. Knott DR (1980) Mutation of a gene for yellow pigment linked to Lr19 in wheat. Can J Genet Cytol 22: 651–654Google Scholar
  127. Knott DR (1986) Novel approaches to wheat breeding. In: Smith EL (ed) Genetic improvement in yield in wheat. Crop Sci Soc Am, Spec Publ 13, pp 25–40Google Scholar
  128. Knott DR (1987) Transferring alien genes to wheat. In: Heyne EG (ed) Wheat and wheat improvement. Second ed Am Soc Agron, Crop Sci Soc Am, Soil Sci Soc Am, Madison, WI, pp 462–471Google Scholar
  129. Knott DR, Dvorak J (1976) Alien germplasm as a source of resistance to disease. Annu Rev Phytopathol 14: 211–235CrossRefGoogle Scholar
  130. Knott DR, Dvorak J, Nanda JS (1977) The transfer to wheat and homoeology of an A gropyron elongatum chromosome carrying resistance to stem rust. Can J Genet Cytol 19: 75–79Google Scholar
  131. Krolow KD, Lukaszewski AJ, Gustafson JP (1985) Preliminary results on the incorporation of D and E-genome chromosomes into 4x triticale. Proc EUCARPIA meeting on Triticale, Claremont-Ferrand, pp 289–295Google Scholar
  132. Kruse A (1967) Intergeneric hybrids between Hordeum vulgare L. ssp. distichum (v. Pallas, 2n 14) and Secale cereale L. (v. Petkus, 2n = 14). Kgl Vet Landboh0jsk Arsskr, pp 82–92Google Scholar
  133. Kruse A (1974) Hordeum X Agropyrum hybrids. Hereditas 77:291–294Google Scholar
  134. Lacadena JR (1977) Interspecific gene transfer in plant breeding. In: Interspecific hybridization in plant breeding. Proc 8th Eucarpia Congr, Madrid, pp 45–62Google Scholar
  135. Lacadena JR, Ramos A (1968) Meiotic behavior in a haploid plant of Triticum durum Desf. Genet Iber 20: 55–71Google Scholar
  136. Lapitan NLV, Gill BS, Sears RG (1987) Genomic and phylogenetic relationships among rye and perennial species in the Triticeae. Crop Science 27: 682–687CrossRefGoogle Scholar
  137. Larson RI, Atkinson TG (1970) Identity of the wheat chromosomes replaced by A gropyron chromosomes in a triple alien chromosome substitution line immune to wheat streak mosaic. Can J Genet Cytol 12: 145–150Google Scholar
  138. Larson RI, Atkinson TG (1972) Isolation of A gropyron elongatum chromosomes conferring resistance to the wheat curl mite on a Triticum/Agropyron hybrid. Can J Genet Cytol 14: 731–732Google Scholar
  139. Law CN, Snape JW, Worland Al (1987) Aneuploidy in wheat and its uses in genetic analysis. In: Lupton FGH (ed) Wheat breeding: its scientific basis. Chapman and Hall, London, pp 71–108Google Scholar
  140. Li Z, Mu S, Jiang L, Zhou H (1983) A cytogenetic study of blue-grained wheat. Z Pflanzenzücht 90: 265–272Google Scholar
  141. Liang GH, Wang RRC, Niblett CL, Heyne EG (1979) Registration of B–6–37–1 wheat germplasm (Reg. N. EP118). Crop Sci 19: 421CrossRefGoogle Scholar
  142. Lilienfeld FA (1951) Kihara H: Genome analysis in Triticum and Aegilops. Concluding review. Cytologia 16: 101–123CrossRefGoogle Scholar
  143. Limin AE, Fowler DB (1988) Cold hardiness expression in interspecific hybrids and amphiploids of the Triticeae. Genome 30: 361–365CrossRefGoogle Scholar
  144. Littlejohn GM (1988) Salt tolerance of amphiploids and derivatives of crosses between wheat and wildGoogle Scholar
  145. Thinopyrum species. In: Proc 7th Int Wheat genetics Symp, Cambridge, pp 845–849Google Scholar
  146. Liu ZW, Wang RRC (1989) Genome analysis of Thinopyrum caespitosum. Genome 32: 141–145CrossRefGoogle Scholar
  147. Lörz H, Göbel E, Brown P (1988) Advances in tissue culture and progress towards genetic transformation of cereals. Plant Breeding 100: 1–25CrossRefGoogle Scholar
  148. Löve A (1980) Chromosome number reports LXVII. Poaceae-Triticeae. Taxon 29: 163–169CrossRefGoogle Scholar
  149. Löve A (1982) Generic evolution of the wheatgrasses. Biol Zentralbl 101: 199–212Google Scholar
  150. Löve A (1984) Conspectus of the Triticeae. Fedd Rep 95: 425–521Google Scholar
  151. Löve A (1986) Some taxonomical adjustments in eurasiatic wheatgrasses. V eroeffGeobot Inst Eidg Tech Hochsch Stift Puebel Zuer 87: 43–52Google Scholar
  152. Love RM, Suneson CA (1945) Cytogenetics of certain Triticum-Agropyron hybrids and their fertile derivatives. Am J Bot 32: 451–456CrossRefGoogle Scholar
  153. Lucas H, Jahier J (1988) Phylogenetic relationships in some diploid species of Triticeae: cytogenetic analysis of interspecific hybrids. Theor Appl Genet 75: 498–502CrossRefGoogle Scholar
  154. Lyubimova VF (1970) Cytogenetic investigations of hybrids obtained from crossing Agropyron glaucum Roem. et. Schult. with Agropyron elongatum (Host) B.P. Genetika 6: 5–14Google Scholar
  155. Maan SS (1987) Interspecific and intergeneric hybridization in wheat. In: Heyne EG (ed) Wheat and wheat improvement. Second ed Am Soc Agron, Crop Sci Soc Am, Soil Sci Soc Am, Madison, WI, pp 453–461Google Scholar
  156. Maan SS, Gordon J (1988) Compendium of alloplasmic lines and amphiploids in the Triticeae. In: Proc 7th Int Wheat genetics Symp, Cambridge, pp 1325–1371Google Scholar
  157. Marais GF (1990) Preferential transfer in bread wheat of a chromosome with a segment derived from Thinopyrum distichum (Thunb) Löve. Plant Breeding 104: 152–159CrossRefGoogle Scholar
  158. Marais GF, Marais A (1989) The assignment of a Thinopyrum distichum (Thunb) Löve derived translocation to the long arm of wheat chromosome 7D by using endopepidase polymorphisms. Theor Appl Genet 79: 182–186Google Scholar
  159. Marais GF, Roux HS, Pretorius ZA, Pienaar RdeV (1988) Resistance to leaf rust of wheat derived from Thinopyrum distichum (Thunb.) Löve. In: Proc 7th Int Wheat genetics Symp, Cambridge, pp 369–373Google Scholar
  160. Martin A, Chapman V (1977) A hybrid between Hordeum chilense X Triticum aestivum. Cereal Res Commun 5: 365–368Google Scholar
  161. May CE, Appels R (1987) The molecular genetics of wheat: toward an understanding of 16 billion base pairs of DNA. In: Heyne EG (ed) Wheat and wheat improvement. Second ed Am Soc Agron, Crop Sci Soc Am, Soil Sci Soc Am, Madison, WI, pp 166–198Google Scholar
  162. McGuire PE, Dvofâk J (1981) High salt-tolerance potential in wheatgrasses. Crop Sci 21: 702–705CrossRefGoogle Scholar
  163. McGuire PE (1984) Chromosome pairing in triploid and tetraploid hybrids in Elytrigia (Triticeae, Poaceae). Can J Genet Cytol 26: 519–522Google Scholar
  164. McIntosh RA (1988) Catalogue of gene symbols for wheat. In: Proc 7th Int Wheat genetics Symp, Cambridge, pp 1225–1323Google Scholar
  165. Mochizuki A (1960) Addition of individual chromosomes ofAgropyron to durum wheat. Wheat Inf Sery 6: 81–85Google Scholar
  166. Mochizuki A (1962) Agropyron addition lines of durum wheat. Seiken Ziho 13:133–138Google Scholar
  167. Morris R, Sears ER (1967) The cytogenetics of wheat and its relatives. In: Quisenberry KS, Reitz LP (eds) Wheat and wheat improvement. Am Soc Agron, Madison, WI, pp 19–87Google Scholar
  168. Moustakas M, Coucoli H (1982) Karyotype and seed protein profile determination of Agropyron striatulatum natural Greek populations. Wheat Inf Sery 55: 27–31Google Scholar
  169. Moustakas M, Symeonidis L, Coucoli H (1986) Seed protein electrophoresis in Agropyron junceum (L.) P.B. complex. Ann Bot (London) 57: 35–40Google Scholar
  170. Mujeeb-Kazi A, Bernard M (1982) Somatic chromosome variation in backcross-1 progenies from intergeneric hybrids involving some Triticeae. Cereal Res Commun 10: 41–45Google Scholar
  171. Mujeeb-Kazi A, Bernard M (1985) Intergeneric hybridization to induce alien genetic transfers into Triticum aestivum. Pak J Bot 17: 271–289Google Scholar
  172. Mujeeb-Kazi A, Kimber G (1985) The production, cytology and practicallity of wide hybrids in the Triticeae. Cereal Res Commun 13: 111–124Google Scholar
  173. Mujeeb-Kazi A, Rodriguez R (1981) Cytogenetics of intergeneric hybrids involving genera within the Triticeae. Cereal Res Commun 9: 39–45Google Scholar
  174. Mujeeb-Kazi A, Roldan S, Miranda JL (1984) Intergeneric hybrids of Triticum aestivum L. with several Agropyron and Elymus species. Cereal Res Commun 12: 75–79Google Scholar
  175. Mujeeb-Kazi A, Roldan S, Suh DY, Sitch LA, Farooq S (1987) Production and cytogenetic analysis of hybrids between Triticum aestivum and some caespitose Agropyron species. Genome 29: 537–553CrossRefGoogle Scholar
  176. Mujeeb-Kazi A, Roldan S, Suh DY, Ter-Kuile N, Farooq S (1989) Production and cytogenetics of Triticum aestivum L. hybrids with some rhizomatous species. Theor Appl Genet 77: 162–168CrossRefGoogle Scholar
  177. Napier KV, Walton PD (1983) Hybrids between Agropyron trachycaulum and A. intermedium. Euphytica 32: 231–239CrossRefGoogle Scholar
  178. Napier KV, Walton PD (1984) Hybrids between tetraploid Agropyron spicatum and A. intermedium. Z Pflanzenzücht 92: 221–228Google Scholar
  179. OhlendorfA (1955) Zytologische Untersuchungen an Weizen-Quecken-Bastarden. Züchter 22: 332–351Google Scholar
  180. Okamoto M (1957) Asynaptic effect of the chromosome V. Wheat Inf Sery 5: 6Google Scholar
  181. Ortiz LT, Gonzalez A, Chueca MC, Cauderon Y (1986a) Chromosomal structure of homozygous common wheat lines obtained from wheat x Agropyron X Aegilops speltoides derivatives. I. A screening of the reciprocal translocations. Can J Genet Cytol 28: 69–75Google Scholar
  182. Ortiz LT, Gonzales A, Chueca MC, Cauderon Y (19866) Chromosomal structure of homozygous common wheat lines obtained from (wheat X Agropyron) X Aegilops speltoides derivatives. II. A screening of paracentric inversions. Can J Genet Cytol 28: 906–912Google Scholar
  183. Östergren G (1940a) Cytology of Agropyron junceum, A. repens and their spontaneous hybrids. Hereditas 26: 305–316CrossRefGoogle Scholar
  184. Östergren G (1940b) A hybrid between Triticum turgidum and Agropyron junceum. Hereditas 26: 395–398CrossRefGoogle Scholar
  185. Peto FH (1936) Hybridization between wheat and Elymus. II. Cytology of the male parents and F, generation. Can J Res Sect C 14: 206–214Google Scholar
  186. Petrova KA (1970) Morphological and cytological investigation of Agropyron elongatum (Host) P.B. x Elymus mollis Trin. 2n = 28 F, hybrids and amphiploids. In: Otdalen Gibridiz i Poliploidiya, USSR, Nauk, Moscow, pp 158–176Google Scholar
  187. Pienaar RdeV (1981) Genome relationships in wheat x Agropyron distichum (Thunb) Beauv. hybrids. Z Pflanzenzücht 87: 193–212Google Scholar
  188. Pienaar RdeV (1983) Cytogenetic studies in Triticum-Elytrigia amphiploid hybrids. In: Proc 6th Int Wheat genetics Symp, Kyoto, pp 327–333Google Scholar
  189. Pienaar RdeV (1988) Hexaploid “wheats” with novel third genomes. In: Proc 7th Int Wheat genetics Symp, Cambridge, pp 403–408Google Scholar
  190. Pienaar RdeV, Littlejohn GM, Sears ER (1988) Genomic relationships in Thinopyrum. S A J Bot 54: 541–550Google Scholar
  191. Plourde A, Comeau A, Fedak G, St-Pierre C-A (1989) Intergeneric hybrids of Triticum aestivum X Leymus multicaulis. Genome 32: 282–287CrossRefGoogle Scholar
  192. Pope WK, Love RM (1952) Comparative cytology of colchicine induced amphiploids of interspecific hybrids: Agropyron trichophorum X Triticum durum, T. timopheevi and T. macho. Hilgardia 21: 411–429Google Scholar
  193. Riley R (1974) Cytogenetics of chromosome pairing in wheat. Genetics 78: 193–203PubMedGoogle Scholar
  194. Riley R, Chapman V (1958) Genetic control of the cytologically diploid behavior of hexaploid wheat. Nature (London) 182: 713–715CrossRefGoogle Scholar
  195. Riley R, Kimber G (1966) The transfer of alien genetic variation to wheat. Rep Plant Breed Inst, Cambridge, pp 6–36Google Scholar
  196. Riley R, Law CN (1984) Chromosome manipulation in plant breeding: progress and prospects. In: Gustafson JP (ed) Gene manipulation in plant improvement. Plenum, New York, pp 301–322CrossRefGoogle Scholar
  197. Riley R, Chapman V, Johnson R (1968) The incorporation of alien disease resistance in wheat by genetic interference with the regulation of meiotic chromosome synapsis. Genet Res 12: 199–219CrossRefGoogle Scholar
  198. Rommel M (1958) Eine vereinfachte Methode der Embryokultur bei Getreide. Züchter 28: 149–151Google Scholar
  199. Rosenberg 0 (1909) Cytologische and Morphologische Studien an Drosera longifolia X rotundifolia. Kungl Svensk Vetensk Acad Handl 43: 1–64Google Scholar
  200. Schlehuber AM, Sebesta EE (1959) Progress in wheatgrass breeding. Proc Okl Acad Sci 39:6–16 Schulz-Schaeffer J, Haller SE (1988) Alien chromosome addition in durum wheat. II. Advanced progeny. Genome 30: 303–306Google Scholar
  201. Schulz-Sheaffer J, McNeal FH (1977) Alien chromosome addition in wheat. Crop Sci 17:891–896 Scoles GJ, Kibirige-Sebunya JN (1983) Preferential abortion of gametes in wheat induced by an Agropyron chromosome. Can J Genet Cytol 25: 1–6Google Scholar
  202. Sears ER (1954) The aneuploids of common wheat. Missouri Agric Exp Stn Res Bull 572: 59 ppGoogle Scholar
  203. Sears ER (1958) The aneuploids of common wheat. In: Proc 1st Int Wheat genetics Symp. Winnipeg, pp 221–229Google Scholar
  204. Sears ER (1966a) Nullisomic-tetrasomic combinations in hexaploid wheat. In: Riley R, Lewis KR (eds )Google Scholar
  205. Chromosome manipulations and plant genetics. Oliver and Boyd, Edinburgh London, pp 29–45Google Scholar
  206. Sears ER (1966b) Chromosome mapping with the aid of telocentrics. In: Proc 2nd Int Wheat genetics Symp, Lund. Hereditas (Suppl) 2: 370–381Google Scholar
  207. Sears ER (1969) Wheat cytogenetics. Annu Rev Genet 3: 451–468CrossRefGoogle Scholar
  208. Sears ER (1972) Chromosome engineering in wheat. In: Stadler genetics Symp, Univ Missouri, Columbia, MO, 4: 25–38Google Scholar
  209. Sears ER (1973)A gropyron-wheat transfers induced by homoeologous pairing. In: Proc 4th Int Wheat genetics Symp, Columbia, MO, pp 191–199Google Scholar
  210. Sears ER (1976) Genetic control of chromosome pairing in wheat. Annu Rev Genet 10: 31–51PubMedCrossRefGoogle Scholar
  211. Sears ER (1977) Analysis of wheat-Agropyron recombinant chromosomes. In: Interspecific hybridization in plant breeding. Proc 8th Eucarpia Congr, Madrid, pp 63–72Google Scholar
  212. Sears ER (1981) Transfer of alien genetic material to wheat. In: Evans LV, Peacock WJ (eds) Wheat science — today and tomorrow. Univ Press, Cambridge, pp 75–89Google Scholar
  213. Sears ER (1983) The transfer to wheat of interstitial segments of alien chromosomes. In: Proc 6th Int Wheat genetics Symp, Kyoto, pp 1–12Google Scholar
  214. Sears ER (1984) Mutations in wheat that raise the level of meiotic chromosome pairing. In: Gustafson JP (ed) Gene manipulation in plant improvement. Plenum, New York, pp 295–300CrossRefGoogle Scholar
  215. Sears ER, Sears LMS (1978) The telocentric chromosomes of common wheat. In Proc 5th Int Wheat genetics Symp, New Delhi, pp 389–407Google Scholar
  216. Sharma D, Knott DR (1966) The transfer of leaf rust resistance from Agropyron to Triticum by irradiation. Can J Genet Cytol 8: 137–143Google Scholar
  217. Sharma HC, Gill BS (1983a) Current status of wide hybridization in wheat. Euphytica 32: 17–23CrossRefGoogle Scholar
  218. Sharma HC, Gill BS (1983b) New hybrids between Agropyron and wheat. 2. Production, morphology and cytogenetic analysis of F, hybrids and their backcross-1 derivatives. Theor Appl Genet 66: 111–121CrossRefGoogle Scholar
  219. Sharma HC, Gill BS, Sears RG (1984a) Inflorescence culture of wheat-Agropyron hybrids: callus induction, plant regeneration, and potential in overcoming sterility barriers. Plant Cell, Tissue Organ Cult 3: 247–255Google Scholar
  220. Sharma HC, Gill BS, Uyemoto JK (1984b) High levels of resistance inAgropyron species to barley yellow dwarf and wheat streak mosaic viruses. Phytopathol Z 110: 143–147CrossRefGoogle Scholar
  221. Sharma HC, Aylward SG, Gill BS (1987) Partial amphiploid from Triticum aestivum X Agropyron scirpeum cross. Bot Gaz 148: 258–262CrossRefGoogle Scholar
  222. Sharma HC, Ohm HW, Lister RM, Foster JE, Shukle RH (1989) Response of wheatgrasses and wheat X wheatgrass hybrids to barley yellow dwarf virus. Theor Appl Genet 77: 369–374CrossRefGoogle Scholar
  223. Shebeski LH, Wu YS (1952) Inheritance in wheat of stem rust resistance derived from Agropyron elongatum. Sci Agric 32: 26–35Google Scholar
  224. Shepherd KW, Islam AK MR (1988) Fourth compendium of wheat-alien chromosome lines. In: Proc 7th Int Wheat genetics Symp, Cambridge, pp 1373–1381Google Scholar
  225. Shukle RH, Lampe DJ, Lister EM, Foster JE (1987) Aphid feeding behaviour: relationship to barley yellow dwarf virus resistance in Agropyron species. Phytopathol 77: 726–729CrossRefGoogle Scholar
  226. Simmonds NW (1984) Gene manipulation in plant breeding. In: Gustafson JP (ed) Gene manipulation in plant improvement. Plenum, New York, pp 637–658CrossRefGoogle Scholar
  227. Sinigovets MY (1976) The effect of single Agropyron chromosomes on common wheat. Genetika 12: 15–21Google Scholar
  228. Smith DC (1943) Intergeneric hybridization of Triticum and other grasses principally Agropyron. J Hered 34: 219–224Google Scholar
  229. Smith EL, Schlehuber AM, Young HC Jr, Edwards LH (1968) Registration of `Agent’ Wheat. Crop Sci 8: 511–512CrossRefGoogle Scholar
  230. Soliman KM, Bernardin JE, Qualset Co (1980) Effects of an Agropyron chromosome on endosperm proteins in common wheat (Triticum aestivum L.). Biochem Genet 18: 465–482PubMedCrossRefGoogle Scholar
  231. Stebbins GL, Pun FT (1953) Artificial hybrids in the Gramineae, tribe Hordeae. VI. Agropyron intermedium and the problem of genome homologies in the Triticeae. Genetics 38: 600–608PubMedGoogle Scholar
  232. Stoddard SL, Gill BS, Lommel SA (1987) Genetic expression of wheat streak mosaic virus resistance in two wheat-wheatgrass hybrids. Crop Sci 27: 514–519CrossRefGoogle Scholar
  233. The TT, Baker EP (1970) Homoeologous relationships between two Agropyron intermedium chromosomes and wheat. Wheat Inf Sery 31: 29–31Google Scholar
  234. Townley-Smith TF (1965) Cytogenetic study of Agropyron chromosomes carrying rust resistance. M Sc Thesis, Univ Saskatchewan, 38 ppGoogle Scholar
  235. Tsitsin NV (ed) (1962) Wide hybridization in plants. Isr Prog Sci Trans], JerusalemGoogle Scholar
  236. Tsitsin NV (1975) Origin of new species and forms of plants. In: Proc 12th Int Botan Congr Leningrad, pp 3–10Google Scholar
  237. Tsujimoto H, Panayotov I, Tsunewaki K (1987) Behaviour of an extra chromosome carried byGoogle Scholar
  238. alloplasmic common wheat lines having Agropyron trichophyrum cytoplasm. Jpn J Genet 62:291–299Google Scholar
  239. Tzvelev NN (1976) Tribe 3. Triticeae Dum. In: Poaceae URSS, Vauka, Leningrad, pp 105–206Google Scholar
  240. Unrau J, Person C, Kuspira J (1956) Chromosome substitution in hexaploid wheat. Can J Bot 34: 629–640CrossRefGoogle Scholar
  241. Veruschkine SM (1936) The main lines of work with Triticum-Agropyron hybrids at the Saratov Station. Selekc Semenov 8: 23–25Google Scholar
  242. Vinall HN, Hein MA (1937) Breeding miscellaneous grasses. USDA Yearb, pp 1032–1102Google Scholar
  243. Vos DJ (1983) Observation of introgression of Agropyron elongatum into triticale. In: Proc 6th Int Wheat genetics Symp, Kyoto, pp 897–902Google Scholar
  244. Wall AM, Riley R, Chapman V (1971) Wheat mutants permitting homoeologous meiotic chromosome pairing. Genet Res 18: 311–328CrossRefGoogle Scholar
  245. Wang RRC (1985) Genome analysis of Thinopyrum bessarabicum and T. elongatum. Can J Genet Cytol 27: 722–728Google Scholar
  246. Wang RRC (1986a) Diploid perennial intergeneric hybrids in the tribe Triticeae. I. A gropyron cristatum X Pseudoroegneria libanotica and Critesion violaceum X Psathyrostachys juncea. Crop Sci 26: 75–78CrossRefGoogle Scholar
  247. Wang RRC (1986b) Diploid perennial intergeneric hybrids in the tribe Triticeae. II. Hybrids of Thinopyrum elongatum with Pseudoroegneria spicata and Critesion violaceum. Biol Zentrabl 105: 361–368Google Scholar
  248. Wang RRC (1986c) Amphiploids of the diploid hybrid Thinopyrum bessarabicum X T. elongatum. In: 78th Annu Meet Amr Agron Soc, New Orleans, Louisiana, Abstr, 86 ppGoogle Scholar
  249. Wang RRC (1987) Progenies of Thinopyrum elongatum X Agropyron mongolicum. Genome 29: 738–743CrossRefGoogle Scholar
  250. Wang RRC (1988) Diploid perennial intergeneric hybrids in the tribe Triticeae. IV. Hybrids among Thinopyrum bessarabicum, Pseudoroegneria spicata, and Secale montanum. Genome 30: 356–360CrossRefGoogle Scholar
  251. Wang RRC (1989) An assessment of genome analysis based on chromosome pairing in hybrids of perennial Triticeae. Genome 32: 179–189CrossRefGoogle Scholar
  252. Wang RRC, Hsiao C (1989) Genome relationships between Thinopyrum bessarabicum and T. elongatum: revisited. Genome 32: 802–809CrossRefGoogle Scholar
  253. Wang RRC, Liang GH, Heyne EG (1977) Effectiveness of the ph gene in inducing homoeologous chromosome pairing in Agrotricum. Theor Appl Genet 51: 139–142Google Scholar
  254. Wang RRC, Dewey DR, Hsiao C (1985) Intergeneric hybrids ofAgropyron and Pseudoroegneria. Bot Gaz 146: 268–274CrossRefGoogle Scholar
  255. Whelan EDP (1988) Transmission of a chromosome from decaploid Agropyron elongatum that confers resistance to the wheat curl mite in common wheat. Genome 30: 293–298CrossRefGoogle Scholar
  256. Whelan EDP, Hart GE (1988) A spontaneous translocation that confers wheat curl mite resistance from decaploid Agropyron elongatum to common wheat. Genome 30: 289–292CrossRefGoogle Scholar
  257. Whelan EDP, Thomas JB (1988) Resistance to colonization by the wheat curl mite in Triticum-Agropyron hybrids and Robertsonian translocations. In: Proc 7th Int Wheat genetics Symp, Cambridge, pp 913–916Google Scholar
  258. Whelan EDP, Atkinson TG, Larson RI (1983) Registration of LRS-IF193 wheat germplasm. Crop Sci 23: 194CrossRefGoogle Scholar
  259. Whelan EDP, Conner RL, Thomas JB, Kuzyk AD (1986) Transmission of a wheat alien chromosome translocation with resistance to the wheat curl mite in common wheat, Triticum aestivum L. Can J Genet Cytol 28: 294–297Google Scholar
  260. White WJ (1940) Intergeneric crosses between Triticum and Agropyron. Sci Agric 21: 198–232Google Scholar
  261. Wienhues A (1966) Transfer of rust resistance of Agropyron to wheat by addition, substitution and translocation. In: Proc 2nd Int Wheat genetics Symp, Lund. Hereditas (Suppl) 2: 328–341Google Scholar
  262. Wienhues A (1973) Translocations between wheat chromosomes and an Agropyron chromosome conditioning rust resistance. In: Proc 4th Int Wheat genetics Symp, Columbia, MO, pp 201–207Google Scholar
  263. Wienhues A (1979a) Translokationlinien mit Resistenz gegen Braunrost (Puccinia recondita) aus Agropyron intermedium. Ergebnisse aus der Rückkreuzung mit Winterweizensorten. Z Pflanzenzücht 82: 149–161Google Scholar
  264. Wienhues A (1979b) Resistenz gegen Gelbrost (Puccinia striiformis) aus Agropyron intermedium übertragen in den Winterweizen. Z Pflanzenzücht 82: 201–211Google Scholar
  265. Wong RS, Wells DG, Gardner WS (1974) Cytogenetics and breeding behavior of a hexaploidAgrotricum immune from wheat streak mosaic virus. Crop Sci 14: 406–407CrossRefGoogle Scholar
  266. Wu LP, Zheng CM, Jia ZP, Yuan JX (1989) Chromosome pairing in hybrids of ph lb and nulli5B-tetra5D wheat with rye and Agrotricum. Plant Breeding 102: 281–285Google Scholar
  267. Wyn Jones RG, Gorham J (1986) The potential for enhancing the salt tolerance of wheat and other important crop plants. Outlook Agric 15: 33–39Google Scholar
  268. Yasumuro Y, Morris R, Sharma DC, Schmidt JW (1981) Induced pairing between a wheat (Triticum aestivum) and an Agropyron elongatum chromosome. Can J Genet Cytol 23: 49–56Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • R. de V.Pienaar
    • 1
  1. 1.Department of GeneticsUniversity of StellenboschStellenboschRepublic of South Africa

Personalised recommendations