Advertisement

Theoretical Background

  • Toshiaki Suhara
  • Masatoshi Fujimura
Part of the Springer Series in Photonics book series (PHOTONICS, volume 11)

Abstract

This chapter describes the basic concepts required to discuss waveguide nonlinear optic (NLO) devices. Optical waveguides offer a fundamental device structure, in which optical waves are confined to enhance the NLO effect. The properties of NLO materials are described by mathematical expressions of the relation between optical field and nonlinear polarizations. The coupled-mode equations for the theoretical analysis of NLO interactions are derived. The concept and fundamental schemes of phase matching are introduced.

Keywords

Optical Waveguide Mode Index Phase Match Pump Wave Planar Waveguide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 2.1
    D.Marcuse: Theory of Dielectric Optical Waveguides ( Academic Press, New York 1974 )Google Scholar
  2. 2.2.
    T.Tamir, ed.: Integrated Optics ( Springer, Berlin 1975 )Google Scholar
  3. 2.3
    A.W.Snyder, J.D.Love: Optical Waveguide Theory ( Chapman and Hall, London 1983 )Google Scholar
  4. 2.4
    H.Nishihara, M.Haruna, T.Suhara: Optical Integrated Circuits ( McGraw-Hill, New York 1989 )Google Scholar
  5. 2.5
    T.Tamir, ed.: Guided-Wave Optoelectronics (Springer-Verlag, Berlin 1988Google Scholar
  6. 2.6
    C.Vassallo: Optical Waveguide Concepts ( Elsevier, Amsterdam 1991 )Google Scholar
  7. 2.7
    E.A.J.Marcattili: Bell Syst. Tech. J., 48, pp. 2071–2102 (1969)Google Scholar
  8. 2.8
    M.Koshiba, H.Saitoh, M.Eguchi, K.Hirayama: IEE Proc., J, 139, pp. 166–171 (1992)Google Scholar
  9. 2.9
    M.Stern: IEE Proc. J, 135, pp. 5–63 (1988)Google Scholar
  10. 2.10
    D.Marcuse: Bell Syst. Tech. J., 54, pp. 985–995 (1975)Google Scholar
  11. 2.11
    C.Flytzanis: Theory of Nonlinear Optical Susceptibilities, in H.Rabin, C.L.Tang ed.: Quantum Electronics: A Treatise vol.1 Nonlinear Optics, I, Nonlinear Optics, Pt.A ( Academic Press, New York 1975 )Google Scholar
  12. 2.12
    Y.R.Shen: The Principles of Nonlinear Optics ( Jhon Wiley and Sons, New York 1984 )Google Scholar
  13. 2.13
    P.N.Butcher, D.Cotter: The Elements of Nonlinear Optics ( Cambridge University Press, Cambridge 1990 )CrossRefGoogle Scholar
  14. 2.14
    D.L.Mills: Nonlinear Optics: Basic Concepts, 2nd ed. ( Springer, Berlin 1998 )MATHCrossRefGoogle Scholar
  15. 2.15
    G.I.Stegeman and C.T.Seaton: Nonlinear integrated optics, J. Appl. Phys., 58, pp. R57 - R78 (1985)ADSCrossRefGoogle Scholar
  16. 2.16
    D.B.Ostrowsky, R.Reinisch, ed.: Guided Wave Nonlinear Optics ( Kluwer Academic Publishers, Dordrecht 1991 )Google Scholar
  17. 2.17
    V.G.Dmitriv, G.G.Gurzadyan, D.N.Nikogosyan: Handbook of Nonlinear Optical Crystals, 2nd ed. ( Springer, Berlin 1995 )Google Scholar
  18. 2.18
    A. Yariv: IEEE J. Quantum Electron., QE-9, pp. 919–933 (1973)Google Scholar
  19. 2.19
    A.Yariv: Quantum Electronics, 2nd ed. ( Jhon Wiley and Sons, New York 1975 )Google Scholar
  20. 2.20
    T.Suhara, H.Nishihara: IEEE J. Quantum ELectron. QE-22, pp. 845–867 (1986)Google Scholar
  21. 2.21
    I.A.Armstrong, N.Bloembergen, I.Ducuing, P.S.Pershan: Phys. Rev., 127, pp. 1918–1939 (1962)ADSCrossRefGoogle Scholar
  22. 2.22
    H.Rabin, C.L.Tang ed.: Quantum Electronics: A Treatise vol.1 Nonlinear Optics, I, Nonlinear Optics, Pt.B ( Academic Press, New York 1975 )Google Scholar
  23. 2.23
    N.Uesugi, T. Kimura: Appl. Phys. Lett., 29, pp. 572–574 (1976)ADSCrossRefGoogle Scholar
  24. 2.24
    N.Uesugi, K.Daikoku, K.Kubota: Appl. Phys. Lett., 34, pp.60–62 (1979CrossRefGoogle Scholar
  25. 2.24
    H.Ito, H.Inaba: Opt. Lett., 2, pp. 139–141 (1978)Google Scholar
  26. 2.26
    P.K.Tien, R.Ulrich, R.J.Martin, Appl. Phys. Lett., 17, pp. 447–450 (1970)Google Scholar
  27. 2.27
    M.DeMicheli, J.Borineau, S.Neveu, P.Sibillot, D.B.Ostrowsky, M.Papuchen: Opt. Lett., 8, pp. 116–118 (1983).ADSCrossRefGoogle Scholar
  28. 2.28
    J.D.Bierlein, D.B.Laubacher, J.B.Brown, C.J.van der Poel: Appl. Phys Lett., 56, pp. 1725–1727 (1990)ADSCrossRefGoogle Scholar
  29. 2.29
    R.Normandin, G.I.Stegeman: Opt. Lett., 4, p. 58 (1979).ADSCrossRefGoogle Scholar
  30. 2.30
    N.D.Whitbread, J.S.Roberts, P.N.Rpbson, M.A.Pate: Electron. Lett., 29, pp. 2106–2107 (1993)CrossRefGoogle Scholar
  31. 2.31
    R.Lodenkamper, M.L.Bortz, M.M.Fejer, K.Baccher, J.S.Harris,Jr.: Opt. Lett., 18, pp. 1798–1800 (1993)ADSCrossRefGoogle Scholar
  32. 2.32
    Y.Avetisyan, Y.Sasaki, H.Ito: Appl. Phys. B. 73, pp. 511–514 (2001)ADSCrossRefGoogle Scholar
  33. 2.33
    T.Suhara, Y.Avetisyan, H.Ito: IEEE J. Quantum Electron., 39, pp. 166–171 (2003)ADSCrossRefGoogle Scholar
  34. 2.34
    N.Bloembergen, A.J.Sievers: Appl. Phys. Lett., 17, pp. 483–485 (1970)ADSCrossRefGoogle Scholar
  35. 2.35
    C.L.Tang P.P.Bey: IEEE J. Quantum Electron., QE-9, pp. 9–17 (1973)Google Scholar
  36. 2.36
    J.P.van der Ziel, M.Ilegems: Appl. Phys. Lett., 28, pp. 437–439 (1976)Google Scholar
  37. 2.37
    J.D.Joannopoulos, P.R.Villeneuve, S.Fan: Nature, 386, pp. 143–149 (1997)CrossRefGoogle Scholar
  38. 2.38
    A.A,Maier: Soy. J. Quantum Electron., 10, p. 925 (1980)ADSCrossRefGoogle Scholar
  39. 3.39
    S.I.Bozhevol’nyi, K.S.Buritskii, E.M.Zolotov, V.A.Chernykh: Sov. Tech. Phys. Lett, 7, p. 278 (1981)Google Scholar
  40. 2.40
    M.A.Duguay, J.S.Weiner: Appl. Phys. Lett., 47, pp. 547–549 (1985)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Toshiaki Suhara
    • 1
  • Masatoshi Fujimura
    • 1
  1. 1.Graduate School of Engineering, Department of ElectronicsOsaka UniversityOsakaJapan

Personalised recommendations