Skip to main content

Modeling the Uptake of Metal Ions by Living Algal Cells

  • Chapter
Wastewater Treatment with Algae

Part of the book series: Biotechnology Intelligence Unit ((BIOIU))

Abstract

The intrinsic capability of both living and dead microorganisms, including algae, to sequester and possibly accumulate high levels of metal ions from dilute aqueous solutions has attracted much attention over the years and a number of substantial reviews are available.1–5 This interest is due to both the ecological implications, not the least of which includes the entry of potentially toxic heavy metals into the food chain, as well as the possible exploitation of this phenomenon to economically clean up waste and other waters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hughes M, Poole R. Metals and Micro-organisms. New York: Chapman & Hall, 1989.

    Google Scholar 

  2. Volesky B, Biosorption of Heavy Metals. Boca Raton: CRC Press, 1990.

    Google Scholar 

  3. Ehlrich H, Brierley C. Microbial Mineral recovery, New York: McGraw-Hill, 1990.

    Google Scholar 

  4. Madgwick J. Biological sorption and uptake of toxic metal ions from wastewaters. Aust J Biotechnol 1994; 4 (5): 292–297.

    CAS  Google Scholar 

  5. Volesky B, Holan Z. Biosorption of heavy metals. Biotechnol Prog 1995; 10: 235–250.

    Article  Google Scholar 

  6. Wilde E, Benemann J. Bioremoval of heavy metals by the use of microalgae. Biotechnol Adv 1993; 11 (4): 781–812.

    Article  CAS  Google Scholar 

  7. Khummongkol D, Canterford G, Fryer C. Accumulation of heavy metals in unicellular algae. Biotechnol Bioeng 1982; 24: 2643–2660.

    Article  CAS  Google Scholar 

  8. de Rome J, Gadd G. Copper adsorption by Rhizopus arrhizus, Cladosporium resinae and Penicillium italicum. Appl Microbiol Biotechnol 1987; 26: 84–90.

    Article  Google Scholar 

  9. Weidemann D, Tanner R, Strandberg G. Shumate II S, Modelling the rate of transfer of uranyl ions onto microbial cells. Enzyme Microb Technol 1981; 3: 33–40.

    Article  CAS  Google Scholar 

  10. Paton W, Budd K. Zinc uptake in Neocosmospora vasinfecta. J Gen Microbiol 1972; 72: 173–184.

    Article  CAS  Google Scholar 

  11. Byerley J, Scharer J, Charles A. Uranium (VI) biosorption from process solution. Chem Eng J 1987; 36: B49 - B59.

    Article  CAS  Google Scholar 

  12. Gutknecht J. Mechanism of radioactive zinc uptake by Ulva lactuca, Limnol Oceanogr 1965; 10: 58–66.

    Article  CAS  Google Scholar 

  13. Les A, Walker R. Toxicity and binding of copper, zinc, and cadmium by the blue-green alga Chroococus paris. Water, Air, Soil Pollut 1984; 23: 129–139.

    Article  CAS  Google Scholar 

  14. Bell J, Tsezos M. Removal of hazardous organic pollutants by biomass adsorption. J Water Pollutn Control Fed 1987; 59: 191–198.

    CAS  Google Scholar 

  15. Geisweid H, Urbach W. Sorption of cadmium by the green microalgae Chlorella vulgaris, Ankistrodesmus braunii and Eremosphaera. Pflanzenphysiol 1983; 109: 27–141.

    Google Scholar 

  16. Sag Y, Kutsal T. Application of adsorption isotherms to chromium adsorption on Z. ramigera. Biotechnol Lett 1989; 11: 141–144.

    Article  CAS  Google Scholar 

  17. de Carvalho R, Chong K, Volesky B. Evaluation of the Cd, Cu and Zn biosorption in two-metal systems using an algal biosorbent. Biotechnol Prog 1995; 11: 39–44.

    Article  Google Scholar 

  18. Chong K, Volesky B. Description of two-metal biosorption equilibria by Langmuir-type models. Biotechnol Bioeng 1995; 47: 451–460.

    Article  CAS  Google Scholar 

  19. Chong K, Volesky B. Metal biosorption equilibria in a ternary system. Biotechnol Bioeng 1996; 49: 629–638.

    Article  CAS  Google Scholar 

  20. Tsezos M, Noh S, Baird M. A batch reactor mass transfer kinetic model for immobilized biomass biosorption. Biotechnol Bioeng 1988; 32: 545–553.

    Article  CAS  Google Scholar 

  21. Peel R, Benedek A. Dual rate kinetic model of a fixed bed adsorber. J Environ Eng Div (Am Soc Civ Eng) 1980; EE4:797–813.

    Google Scholar 

  22. Tsezos M, Deutschmann A. The use of a mathematical model for the study of the important parameters in immobilized biomass biosorption. J Chem Tech Biotechnol 1992; 53: 1–12.

    CAS  Google Scholar 

  23. Davies A. The kinetics of and a preliminary model for the uptake of radioactive zinc by Phaeodactylum tricornutum in culture. In: Krippner M, ed. Symposium on Radioactive Contamination of the Marine Environment, Seattle, USA 10–14 July, 1972: 403–420.

    Google Scholar 

  24. Williams R. Physicochemical aspects of inorganic element transfer through membrane. Phil Trans R Soc 1981; Lond, B294: 57–74.

    Article  CAS  Google Scholar 

  25. Wood J. In: Sigel H, ed. Metal Ions in Biological Systems. Circulation of Metals in the Environment. Marcel Dekker 1984; 18: 223–237.

    Google Scholar 

  26. Ting Y, Lawson F, Prince I. Uptake of cadmium and zinc by the alga Chlorella vulgaris: Part 1. Individual ion species. Biotechnol Bioeng 1989; 34: 990–999.

    Article  CAS  Google Scholar 

  27. Ting Y, Lawson F, Prince I. Uptake of heavy metal ions by algae. Aust J Biotechnol 1990; 4 (3): 192–204.

    Google Scholar 

  28. Ting Y, Lawson F, Prince I. Uptake of cadmium and zinc by the alga Chlorella vulgaris: Part 2. Multi-ion solution. Biotechnol Bioeng 1991; 37: 445–455.

    Article  CAS  Google Scholar 

  29. Khoshmanesh A. Modelling the algal uptake of metals. M.Eng.Sc. thesis 1995; Monash University, Australia. 1995.

    Google Scholar 

  30. Khoshmanesh A, Lawson F, Prince I. Cadmium uptake by unicellular green microalgae. Chem Eng J 1996; 62: 81–88.

    CAS  Google Scholar 

  31. Khoshmanesh A, Lawson F, Prince I. Cell surface area as a major parameter in the uptake of cadmium by unicellular green microalgae. Chem Eng J 1997; 65: 13–19.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Prince, I.G., Ting, Y.P., Lawson, F. (1998). Modeling the Uptake of Metal Ions by Living Algal Cells. In: Wong, YS., Tam, N.F.Y. (eds) Wastewater Treatment with Algae. Biotechnology Intelligence Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10863-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10863-5_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-10865-9

  • Online ISBN: 978-3-662-10863-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics