Metal Resistance and Accumulation in Cyanobacteria

  • Marli F. Fiore
  • David H. Moon
  • Jack T. Trevors
Part of the Biotechnology Intelligence Unit book series (BIOIU)


The indiscriminate discharge of metals into the environment generated from various industrial processes, modern agricultural practices, acid mine drainage and human wastes, has long been recognized as an important source of these pollutant. Metals constitute more than 75% of all known elements and occupy groups 1A to 6A (representative metals), groups 1B to 8B (transition metals) and the lanthanide and actinide metals.1 The term “heavy metals” has been redefined over the years and although not completely satisfactory from a chemical point of view, the most widely used is those elements with a density greater than 5 g/cm3. The definition problem has been thoroughly discussed by Gadd2 and to avoid further confusion the term heavy metal will not be used here.


Plectonema Boryanum Polyphosphate Body Nostoc Muscorum Cyanobacterium Anacystis Nidulans Anabaena Doliolum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Borovik AS. Characterization of metal ions in biological systems. In: Shaw AJ ed. Heavy Metal Tolerance in Plants: Evolutionary Aspects. Boca Raton: CRC Press, 1990: 3–19.Google Scholar
  2. 2.
    Gadd GM. Metals and microorganisms: A problem of definition. FEMS Microbiol Lett 1992; 100: 197–204.Google Scholar
  3. 3.
    Nies DH, Silver S. Ion efflux system involved in bacterial metal resistances. J Ind Microbiol 1995; 14: 186–199.CrossRefGoogle Scholar
  4. 4.
    Beveridge TJ, Hughes MN, Lee H et al. Metal-microbe interaction: Contemporary approaches. Adv Microbial Physiol 1997; 38177–243.Google Scholar
  5. 5.
    Hughes MN, Poole RK, eds. Metals and Micro-organisms. London: Chapman & Hall, 1989.Google Scholar
  6. 6.
    Beveridge TJ. Mechanisms of the binding of metallic ions to bacterial walls and the possible impact on microbial ecology. In: Klug MT, Reddy CA eds. Current Perspectives in Microbial Ecology. Washington DC: American Society for Microbiology, 1984: 601–607.Google Scholar
  7. 7.
    Beveridge TJ. The immobilization of soluble metals by bacterial wall. Biotechnol Bioeng Symp 1986; 16: 127–139.Google Scholar
  8. 8.
    Greene B, Darnall DW. Microbial oxygenic photoautotrophs (cyanobacteria and algae) for metal ion binding. In: Ehrlich HL, Brierley CL eds. Microbial Mineral Recovery. New York: McGraw-Hill, 1990: 277–302.Google Scholar
  9. 9.
    MacHardy BM, George JJ. Bioaccumulation and toxicity of zinc in the green algae, Cladophora glomerata. Environ Poll 199o; 66: 55–66.Google Scholar
  10. 10.
    Trevors JT, Stratton GW, Gadd GM. Cadmium transport, resistance and toxicity in bacteria, algae and fungi. Can J Microbiol 1986; 32: 447–464.CrossRefGoogle Scholar
  11. 11.
    Rippka R. Recognition and identification of cyanobacteria. Meth Enzymol 1988; 167: 28–67.CrossRefGoogle Scholar
  12. 12.
    Woese CR. Bacterial evolution. Microbiol Rev 1987; 51: 221–271.Google Scholar
  13. 13.
    Gibbons NE, Murray RGE. Proposal concerning the higher taxa of bacteria. Int J Syst Bacteriol 1978; 28: 1–6.CrossRefGoogle Scholar
  14. 14.
    Rippka R, Deruelles J, Waterbury JB et al. Generic assignments, strains histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 1979; 111: 1–61.CrossRefGoogle Scholar
  15. 15.
    Staley JT, Bryant MP, Pfenning N et al, eds. Systematic Bacteriology. Baltimore: Williams & Wilkins, 1989.Google Scholar
  16. 16.
    Fogg GE, Stewart WDP, Fay P et al, eds. The Blue-green Algae. London: Academic Press, 1973.Google Scholar
  17. 17.
    Lee RE, ed. Phycology. Cambridge: Cambridge University Press, 1989.Google Scholar
  18. 18.
    Castenholz RW. Culturing methods for cyanobacteria. Meth Enzymol 1988; 167: 69–93.Google Scholar
  19. 19.
    Carr NG, Whitton BA, eds. The Biology of Blue-green Algae. Berkeley: University California Press, 1973.Google Scholar
  20. 20.
    Fay P, ed. The Blue-greens. Studies in Biology no. 160. London: Edward Arnold, 1983.Google Scholar
  21. 21.
    Say PJ, Whitton BA. Change in flora down a stream showing a zinc gradient. Hydrobiologia 1980; 76: 255–262.CrossRefGoogle Scholar
  22. 22.
    Whitton BA. Zinc and plants in rivers and streams. In: Nriagu JO, ed. Zinc in the Environment. Part II. New York: John Wiley & Sons, 198o: 364–400.Google Scholar
  23. 23.
    Whitton BA, Shehata FHA. Influence of cobalt, nickel, copper and cadmium on the blue green algae Anacystis nidulans. Environ Poll 1982; 27: 275–281.CrossRefGoogle Scholar
  24. 24.
    Whitton BA, Gale NL, Wixson BG. Chemistry and plant ecology of zinc-rich wastes contaminated by blue-green algae. Hydrobiologia 1981; 83: 331–341.CrossRefGoogle Scholar
  25. 25.
    Avery SV, Codd GA, Gadd GM. Caesium accumulation and interactions with other monovalent cations in the cyanobacterium Synechocystis PCC 6803. J Gen Microbiol 1991; 137: 405–413.CrossRefGoogle Scholar
  26. 26.
    Baxter M, Jensen T. Uptake of magnesium, strontium, barium and manganese by Plectonema boryanum (Cyanophyceae) with special reference to polyphosphate bodies. Protoplasma 1980; 104: 81–89.CrossRefGoogle Scholar
  27. 27.
    Fisher NS. Accumulation of metals by marine picoplankton. Mar Biol 1985; 87: 137–142.CrossRefGoogle Scholar
  28. 28.
    Horikoshi T, Nakajima A, Sakaguchi T. Uptake of uranium from sea water by Synechococcus elongatus. J Ferment Technol 1979; 57191–194.Google Scholar
  29. 29.
    Jensen TE, Baxter M, Rachlin JW et al. Uptake of heavy metals by Plectonema boryanum (Cyanophyceae) into cellular components, especially polyphosphate bodies: an X-ray energy dispersive study. Environ Pollut Ser A 1982; 27: 119–127.CrossRefGoogle Scholar
  30. 30.
    Laube VM, McKenzie CN, Kushner DJ. Strategies of response to copper, cadmium, and lead by a blue-green and green algae. Can J Microbiol 1980; 26: 1300–1311.CrossRefGoogle Scholar
  31. 31.
    Massalski A. Laube VM, Kushner DJ. Effects of cadmium and copper on the ultrastructure of Ankistrodesmus braunii and Anabaena 7120. Microb Ecol 1981; 7: 183–193.CrossRefGoogle Scholar
  32. 32.
    Pettersson A, Kunst L, Bergman B et al. Accumulation of aluminium by Anabaena cylindrica into polyphosphate granules and cell walls: an X-ray energy-dispersive microanalysis study. J Gen Microbiol 1985; 131L 2545–2548.Google Scholar
  33. 33.
    Stratton GW, Corke CT. The effect of mercuric, cadmium, and nickel ion combinations on a blue-green alga. Chemosphere 1979; 10: 731–740.CrossRefGoogle Scholar
  34. 34.
    Verma SK, Singh SP. Factors regulating copper uptake in a cyanobacterium. Curr Microbiol 1990; 21: 33–37.CrossRefGoogle Scholar
  35. 35.
    Wang HK, Wood JM. Bioaccumulation of nickel by algae. Environ Sci Technol 1984; 18: 106–109.CrossRefGoogle Scholar
  36. 36.
    Rippka R. Isolation and purification of cyanobacteria. Meth Enzymol 1988; 167: 3–27.CrossRefGoogle Scholar
  37. 37.
    Ray S, White W. Selected aquatic plants as indicator species for heavy metal pollution. J Environ Sci Health 1976; 112: 717–725.Google Scholar
  38. 38.
    Campbell PM, Smith GD. Transport and accumulation of nickel ions in the cyanobacterium Anabaena cylindrica. Arch Biochem Biophys 1986; 244: 470–477.CrossRefGoogle Scholar
  39. 39.
    Les A, Walker RW. Toxicity and binding of copper, zinc, and cadmium by the blue-green alga, Chroococcus paris. Water Air Soil Pollut 1984; 23: 129–139.CrossRefGoogle Scholar
  40. 40.
    Pandey PK, Singh SP. Hg’ uptake in a cyanobacterium. Curr Microbiol 1993; 26: 155–159.CrossRefGoogle Scholar
  41. 41.
    Rai LC, Dubey, SK, Mallick N. Influence of chromium on some physiological variables of Anabaena doliolum: interaction with metabolic inhibitors. BioMetals 1992; 5: 13–16.Google Scholar
  42. 42.
    Schecher WD, Driscoll CT. Interactions of copper and lead with Nostoc muscorum. Water Air Soil Pollut 1985; 24: 85–101.Google Scholar
  43. 43.
    Shehata FHA, Whitton BA. Zinc tolerance in strains of the blue-green alga Anacystis nidulans. Br Phycol J 1982; 17: 5–12.CrossRefGoogle Scholar
  44. 44.
    Singh DP. Cu’ transport in the unicellular cyanobacterium Anacystis nidulans. J Gen Appl Microbiol 1985; 31277–284.Google Scholar
  45. 45.
    Singh SP, Yadava V. Cadmium uptake in Anacystis nidulans: effect of modifying factors. J Gen Microbiol 1985; 31: 39–48.CrossRefGoogle Scholar
  46. 46.
    Verma SK, Singh HN. Evidence for energy-dependent copper efflux as a mechanism of Cu’ resistance in the cyanobacterium Nostoc calcicola. FEMS Microbiol Lett 1991; 84291–294.Google Scholar
  47. 47.
    Gadd GM, Griffiths AJ. Microorganisms and heavy metals toxicity. Microb Ecol 1978; 4: 303–317.CrossRefGoogle Scholar
  48. 48.
    Rai LC, Gauer JP, Kumar HD. Phycology and heavy-metal pollution. Biol Rev Cambridge Philos Soc 1981; 56: 99–151.CrossRefGoogle Scholar
  49. 49.
    Reed RH, Gadd GM. Metal tolerance in eukaryotic and prokaryotic algae. In: Shaw AJ ed. Heavy Metal Tolerance in Plants: Evolutionary Aspects. Boca Raton: CRC Press, 1990: 105–118.Google Scholar
  50. 5o.
    Peterson HG, Healey FP, Wagemann R. Metal toxicity to algae: a highly pH-dependent process. Can J Fish Aquat Sci 1984; 41: 974–979.CrossRefGoogle Scholar
  51. 51.
    Singh SP, Pandey AK. Cadmium-mediated resistance to metals and antibiotics in a cyanobacterium. Mol Gen Genet 1982; 187: 240–243.CrossRefGoogle Scholar
  52. 52.
    Babich H, Stotzky G. Developing standards for environmental toxicants: The need to consider abiotic environmental factors and microbe-mediated ecologic processes. Environ Health Perspect 1983; 49: 247–260.Google Scholar
  53. 53.
    Mallick N, Rai LC. Response of Anabaena doliolum to bimetallic combinations of Cu, Ni and Fe with special reference to sequential addition. J Appl Phycol 1989; 1: 301–306.CrossRefGoogle Scholar
  54. 54.
    Singh CB, Singh SP. Protective effects of Ca’, Mg2+, Cu’, and Ni’ on mercury and methylmercury toxicity to a cyanobacterium. Ecotoxicol Environ Safety 1992; 23a - 1o.Google Scholar
  55. 55.
    Singh CB, Singh SP. Effect of mercury on photosynthesis in Nostoc calcicola: role of ATP and interacting heavy metal ions. J Plant Physiol 1987; 129: 49–58.CrossRefGoogle Scholar
  56. 56.
    Singh CB, Verma SK, Singh SP. Impact of heavy metals on glutamine synthethase and nitrogenase activity in Nostoc calcicola. J Gen Appl Microbiol 1987; 33: 87–91.CrossRefGoogle Scholar
  57. 57.
    Singh SP, Yadava V. Cadmium induced inhibition of nitrate uptake by Anacystis nidulans: interaction with other divalent cations. J Gen Appl Microbiol 1983; 29: 297–304.CrossRefGoogle Scholar
  58. 58.
    Singh SP, Yadava V. Cadmium induced inhibition of ammonium and phosphate uptake in Anacystis nidulans: interaction with other divalent cations. J Gen Appl Microbiol 1984; 3079–86.Google Scholar
  59. 59.
    Rai LC, Raizada M. Effect of nickel and silver ions on survival, growth, carbon fixation and nitrogenase activity in Nostoc muscorum: regulation of toxicity by EDTA and calcium. J Gen Appl Microbiol 1985; 31: 329–337.CrossRefGoogle Scholar
  60. 6o.
    Dubey SK, Rai LC. Toxicity of chromium and tin to Anabaena doliolum. Interaction with bivalent cations. Biol Metals 1990; 3: 8–13.CrossRefGoogle Scholar
  61. 61.
    Rai LC, Dubey SK. Impact of chromium and tin on a nitrogen-fixing cyanobacterium Anabaena doliolum: interaction with bivalent cations. Ecotoxicol Environ Safety 1989; 17: 94–104.CrossRefGoogle Scholar
  62. 62.
    Whitton BA. Toxicity of heavy metals to algae: A review. Phykos 1970; 9: 116–125.Google Scholar
  63. 63.
    Clarke SE, Stuart J, Sanders-Loehr J. Induction of siderophore activity in Anabaena spp., and its moderation of copper toxicity. Appl Environ Microbiol 1987; 53: 917–922.Google Scholar
  64. 64.
    Wurtsbaugh WA, Horne AJ. Effects of copper on nitrogen fixation and growth of blue-green algae in natural plankton associations. Can J Fish Aquat Sci 1982; 39: 1636–1641.CrossRefGoogle Scholar
  65. 65.
    Shehata FHA, Whitton BA. Field and laboratory studies on the blue-green algae from aquatic sites with high levels of zinc. Verh Int Ver Theor Angew Limnol 1981; 21: 1466–1471.Google Scholar
  66. 66.
    Wood JM, Wang HK. Microbial resistance to heavy metal. Environ Sci Technol 1983; 17: 582A - 590A.Google Scholar
  67. 67.
    Flip DS, Peters T, Adams VD et al. Residual heavy metal removal by an algae-intermittent sand filtration system. Water Res 1979; 13: 305–313.CrossRefGoogle Scholar
  68. 68.
    Fiore MF, Trevors JT. Cell composition and metal tolerance in cyanobacteria. BioMetal 1994; 7: 83–103.CrossRefGoogle Scholar
  69. 69.
    Tease BE, Walker R. Comparative composition of the sheath of the cyanobacterium Gloeothece ATCC 27152 cultured with and without combined nitrogen. J Gen Microbiol 1987; 133: 3331–3339.Google Scholar
  70. 70.
    Weckesser J, Hofman K, Jurgens UJ et al. Isolation and chemical analysis of the sheaths of the filamentous cyanobacteria Calothrix parietina and C. scopulorum. J Gen Microbiol 1988; 134: 629–634.Google Scholar
  71. 71.
    Fogg GE, Westlake DF. The importance of extracellular products of algae in freshwater. Verh Int Ver Theor Angew Limnol 1955; 12: 219–231.Google Scholar
  72. 72.
    Wang WS, Tischer RG. Studies of the extracellular polysaccharides produced by a blue-green alga Anabaena flos-aquae A-37. Arch Microbiol 1973; 91: 77–81.Google Scholar
  73. 73.
    Murphy TP, Lean DRS, Nalewajko C. Blue-green algae: their excretion of iron selective chelators enables them to dominate other algae. Science 1976; 192: 900–902.CrossRefGoogle Scholar
  74. 74.
    Rai LC, Mallick N, Singh JB et al. Physiological and biochemical characteristics of a copper tolerant and wild type strain of Anabaena doliolum under copper stress. J Plant Physiol 1991; 138: 68–74.CrossRefGoogle Scholar
  75. 75.
    Crang RE, Jensen TE. Incorporation of titanium in polyphosphate bodies of Anacystis nidulans. J Cell Biology 1975; 67:800.Google Scholar
  76. 76.
    Rachlin JW, Jensen TE, Warkentine B. The toxicological response of the alga Anabaena flos-aquae (Cyanophyceae) to cadmium. Arch Environ Contam Toxicol 1984; 13: 143–151.CrossRefGoogle Scholar
  77. 77.
    Rachlin JW, Jensen TE, Baxter M et al. Utilization of morphometric analysis in evaluating response of Plectonema boryanum (Cyanophyceae) to exposure to eight heavy metals. Arch Environ Contam Toxicol 1982; 11: 323–333.Google Scholar
  78. 78.
    Singh HN, Vaishampayan A, Singh RK. Evidence for the involvement of a genetic determinant controlling functional specificity of group VI B elements in the metabolism of l2 and NO3 in the blue-green alga Nostoc muscorum. Biochem Biophys Res Comm 1978; 81: 67–74.CrossRefGoogle Scholar
  79. 79.
    Hamer DH. Metallothionein. Annu Rev Biochem 1986; 55: 913–951.CrossRefGoogle Scholar
  80. 80.
    Fowler BA, Hieldebrand CE, Kojima Y et al. Nomenclature of metallothionein. Experientia, Suppl 52, 1987: 19–22.Google Scholar
  81. 81.
    Margoshes M, Vallee BL. A cadmium protein from equine kidney cortex. J Am Chem Soc 1957; 79: 4813–4814.CrossRefGoogle Scholar
  82. 82.
    Nordberg M, Kojima Y. Metallothionein and other low molecular weight metal-binding proteins. In: Kagi JHR, Nordberg M, eds. Metallothionein Basel: Brikhauser Verlag, 1979: 41–124.Google Scholar
  83. 83.
    Hartmann HJ, Li YJ, Weser U. Analogous copper (I) coordination in metallothionein from yeast domains of the mammalian protein. BioMetals 1992; 5: 187–191.Google Scholar
  84. 84.
    Rauser WE. Phytochelatins. Annu Rev Biochem 1990; 59: 61–86.CrossRefGoogle Scholar
  85. 85.
    Robinson NJ, Tommey AM, Kuske C et al. Plant metallothioneins. Biochem J 1993; 295: 1–10.Google Scholar
  86. 86.
    Maclean FI, Lucis OJ, Shakh ZA et al. The uptake and subcellular distribution of Cd and Zn in microorganisms. Fed Proc 1972; 31: 699.Google Scholar
  87. 87.
    Khazaeli MB, Mitra RS. Cadmium-binding component in Escherichia coli during accommodation to low levels of this ion. Appl Environ Microbiol 1981; 41: 46–50.Google Scholar
  88. 88.
    MacEntee JD, Woodrow JR, Quirk AV. Investigation of cadmium resistance in Alcaligenes sp. Appl Environ Microbiol 1986; 51: 515–520.Google Scholar
  89. 89.
    Higham DP, Sadler PJ. Cadmium-resistant Pseudomonas putida synthesizes novel cadmium proteins. Science 1984; 225: 1043–1046.CrossRefGoogle Scholar
  90. 90.
    Olafson RW, McCubbin WD, Kay CR. Primary-and secondary-structural analysis of a unique prokaryotic metallothionein from Synechococcus sp. Cyanobacteria. Biochem J 1988; 251: 691–699.Google Scholar
  91. 91.
    Robinson NJ, Gupta A, Fordham-Skelton AP et al. Prokaryotic metallothionein gene characterization and expression: chromosome crawling by ligation-mediated PCR. Proc R Soc Lond B 1990; 242: 241–247.CrossRefGoogle Scholar
  92. 92.
    Wolf WR, Irgolic KJ, Ludwicki KJ et al. Importance and determination of chemical species in biological systems. In Bernhard M, Brinckman FE, Sadler PJ, eds. The Importance of Chemical Speciation in Environmental Processes. Berlin: Springer-Verlag, 1986: 17–25.CrossRefGoogle Scholar
  93. 93.
    Vallee BL. Introduction to metallothionein. Meth Enzymol 1991; 205: 3–7.CrossRefGoogle Scholar
  94. 94.
    Zeng J, Heuchel R, Schaffner W et al. Thionein (apometallothionein) can modulate DNA binding and transcription activation by zinc finger containing factor. Spl. FEBS Lett 1991; 279: 310–312.CrossRefGoogle Scholar
  95. 95.
    Zeng J, Valle BL, Kägi JHR. Zinc transfer from transcription factor IIIA to thionein clusters. Proc Natl Acad Sci USA 1991; 88: 9984–9988.CrossRefGoogle Scholar
  96. 96.
    Wilmotte AMR, Stam WT. Genetic relationships among cyanobacterial strains originally designated as Anacystis nidulans and some other Synechococcus strains. J Gen Microbiol 1984; 130: 2737–2740.Google Scholar
  97. 97.
    Shi J, Lindsay WP, Huckle JW et al. Cyanobacterial metallothionein gene expressed in Escherichia coli: Metal-binding properties of the expressed protein. FEBS Lett 1992; 303: 159–163.CrossRefGoogle Scholar
  98. 98.
    Huckle JM, Morby AP, Turner JS et al. Isolation of the smtA gene encoding a prokaryotic metallothionein. Mol Microbiol 1993; 7: 177–187.CrossRefGoogle Scholar
  99. 99.
    Turner JS, Morby AP, Whitton BA et al. Construction and characterization of Zn2+/Cd2+ hypersensitive cyanobacterial mutants lacking a functional metallothionein locus. J Biol Chem 1993; 268: 4494–4498.Google Scholar
  100. 100.
    Gupta A, Morby AP, Turner JS et al. Deletion within the metallothionein locus of cadmium-tolerant Synechococcus PCC 6301 involving a highly iterated palindrome (HIP1). Mol Microbiol 1993; 7: i89–195.CrossRefGoogle Scholar
  101. 101.
    Turner JS, Robinson NJ, Gupta A. Construction of Zn2+/Cd2+-tolerance cyanobacteria with a modified metallothionein divergon: Further analysis of the function and regulation of smt. J Ind Microbiol 1995; 14: 259–264.CrossRefGoogle Scholar
  102. 102.
    Gupta A, Whitton BA, Morby AP et al. Amplification and rearrangement of a prokaryotic metallothionein locus smt in Synechococcus PCC 6301 selected for tolerance to cadmium. Proc R Soc Lond B 1992; 248: 273–281.CrossRefGoogle Scholar
  103. 103.
    Wilde EW, Benemann JR. Bioremoval of heavy metals by the use of microalgae. Biotech Adv 1993; 11: 781–812.CrossRefGoogle Scholar
  104. 104.
    Becker EW Limitations of heavy metal removal from waste water by means of algae. Water Res 1983; 17: 459–466.CrossRefGoogle Scholar
  105. 105.
    Gale NL, Wixson BG. Removal of heavy metals from industrial effluents by algae. Dev Ind Microbiol 1979; 20: 259–273.Google Scholar
  106. 106.
    Maquieira A, Elmahadi HAM, Puchades R Immobilized cyanobacteria for online trace metal enrichment by flow injection atomic adsorption spectrometry. Anal Chem 1994; 66: 3632–3638.CrossRefGoogle Scholar
  107. 107.
    Bender J, Lee RF, Phillips P. Uptake and transformation of metals and metalloids by microbial mats and their use in bioremediation. J Ind Microbiol 1995; 14: 113–118.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Marli F. Fiore
  • David H. Moon
  • Jack T. Trevors

There are no affiliations available

Personalised recommendations