Limits to Growth

  • Michael A. Borowitzka
Part of the Biotechnology Intelligence Unit book series (BIOIU)

Abstract

Urban, industrial and agricultural wastewaters contain up to three magnitudes higher concentrations of total nitrogen and phosphorous, compared with natural water bodies.1 Normal primary and secondary treatment of these wastewaters eliminates the easily settled materials and oxidizes the organic material present, but does not remove the nutrients which will cause eutrophication of the rivers or lakes into which these wastewaters may be discharged. Tertiary treatment of the effluent is therefore required, and both chemical and physical methods which are used are very expensive. Oswald2 estimates that the relative cost of tertiary treatment to remove PO 4 3− , NH 4 + and NO 3 is about 4 times the cost of primary treatment. Higher orders of treatment, such as quaternary treatment required to remove refractory organics and organic and inorganic toxicants and quinary treatment to remove inorganic salts and heavy metals, are 8 to 16 times as expensive as primary treatment. Algae can be used as a biological alternative tertiary treatment and also for the removal of heavy metals and possibly other toxic substances.3,4 The possibility exists that the algae produced in these systems can be used as animal feed supplements,5,6 or be composted. The use of waste-grown algae may ultimately also have application in closed cycle life-support systems,7,8 or may be used in conjunction with power stations, not only to treat wastewaters, but also to act as a CO2 sink for the amelioration of the impact of greenhouse gases.9–13

Keywords

Surfactant Toxicity Foam Sludge Arsenic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    de la Noue J, Laliberté G, Proulx D. Algae and wastewater. J Appl Phycol 1992; 4: 247–54.CrossRefGoogle Scholar
  2. 2.
    Oswald WJ. Micro algae and waste-water treatment. In: Borowitzka MA, Borowitzka LJ, eds. Micro-algal Biotechnology. Cambridge: Cambridge University Press, 1988: 305–28.Google Scholar
  3. 3.
    Gerhardt MB, Green FB, Newman RD et al. Removal of selenium using a novel algal bacterial process. Res J Water Pollut Cont Fed 1991; 63: 799–805.Google Scholar
  4. 4.
    Wu XF, Kosaric N. Removal of organochlorine compounds in an upflow flocculated algae photobioreactor. Wat Sci Technol 1991; 24: 221–32.Google Scholar
  5. 5.
    Lipstein B, Hurwitz S. The nutritional value of algae for poultry. Dried Chlorella in broiler diets. Brit Poult Sci 1980; 21: 9–21.CrossRefGoogle Scholar
  6. 6.
    Sandbank E, Hepher B. Microalgae grown in wastewater as an ingredient in the diet of warmwater fish. In: Shelef G, Soeder CJ eds. Algal Biomass. Amsterdam: Elsevier/North Holland Biomedical Press, 1980: 697–706.Google Scholar
  7. 7.
    Wharton RA, Smernoff DT, Averner MM. Algae in space. In: Lembi CA, Waaland JR eds. Algae and Human Affairs. Cambridge: Cambridge University Press, 1988: 485–509.Google Scholar
  8. 8.
    Oguchi M, Otsubo K, Nitta K, et al. Closed and continuous algae cultivation system for food production and gas exchange in CELSS. Adv Space Res 1989; 9: 169–77.CrossRefGoogle Scholar
  9. 9.
    Laws EA, Berning JL. A study of the energetics and economics of microalgal mass culture with the marine chlorophyte Tetraselmis suecica-Implications for use of power plant stack gases. Biotechnol Bioeng 1991; 37: 936–47.CrossRefGoogle Scholar
  10. 10.
    Anon. New micro-alga for fixing carbon dioxide. Japan Patent 8009963. 1996.Google Scholar
  11. 11.
    Kishimoto M, Okakura T, Nagashima H et al. CO, fixation and oil production using micro-algae. J Ferment Bioeng 1994; 78: 479–82.CrossRefGoogle Scholar
  12. 12.
    Negoro M, Shioji N, Miyamoto K et al. Growth of microalgae in high CO, gas and effects of SOx and NOx. Appl Biochem Biotechnol 1991; 28–9: 877–86.CrossRefGoogle Scholar
  13. 13.
    Takano H, Takeyama H, Nakamura N et al. CO, removal by high-density culture of a marine cyanobacterium Synechococcus sp using an improved photobioreactor employing light-diffusing optical fibers. Appl Biochem Biotechnol 1992; 34–5: 449–58.Google Scholar
  14. 14.
    Oswald WJ, Gotaas HB. Photosynthesis in sewage treatment. Trans Am Soc Civ Eng 1957; 122: 73–105.Google Scholar
  15. 15.
    Oswald WJ. Large-scale algal culture systems (engineering aspects). In: Borowitzka MA, Borowitzka LJ eds. Micro-Algal Biotechnology. Cambridge: Cambridge University Press, 1988: 357–94.Google Scholar
  16. 16.
    Martin C, de la Noüe J, Picard G. Intensive culture of freshwater microalgae on aerated pig manure. Biomass 1985; 7: 245–59.CrossRefGoogle Scholar
  17. 17.
    Canizares-Villanueva RO, Ramos A, Lemus R et al. Growth of Phormidium sp in aerobic secondary piggery waste-water. Appl Microbiol Biotech 1994; 42: 487–91.CrossRefGoogle Scholar
  18. 18.
    Svoboda IF, Fallowfield HJ. An aerobic piggery slurry treatment system with integrated heat recovery and high rate algal ponds. Wat Sci Technol 1989; 21: 277–87.Google Scholar
  19. 19.
    Tanticharoen M, Bunnag B, Vonshak A. Cultivation of Spirulina using secondary treated starch wastewater. Australas Biotechnol 1993; 3: 223–6.Google Scholar
  20. 20.
    Rodrigues AM, Oliviera JFS. Treatment of wastewaters from the tomato concentrate industry in high rate algal ponds. Wat Sci Technol 1987; 19: 43–9.Google Scholar
  21. 21.
    Rose PD, Maart BA, Dunn KM et al. High rate algal oxidation ponding for the treatment of tannery effluents. Wat Sci Technol 1996; 33: 219–27.Google Scholar
  22. 22.
    Phang SM, Ong KC. Algal biomass production on digested palm oil mill effluent. Biological Wastes 1988; 25: 177–91.CrossRefGoogle Scholar
  23. 23.
    Geeta PK, Phang SM, Hashim MA et al. Rubber effluent treatment in a high-rate algal pond system. In: Phang SM, Lee YK, Borowitzka MA et al, eds. Algal Biotechnology in the Asia-Pacific Region. Kuala Lumpur: Institute of Advanced Studies, University of Malaya, 1994: 306–12.Google Scholar
  24. 24.
    Aksu Z, Kutsal T. The usage of Chlorella vulgaris in waste water treatment containing heavy metal ions. Proc 4th Eur Cong Biotech 1987; 2: 80–3.Google Scholar
  25. 25.
    Mahan CA, Holcombe JA. Immobilization of algae cells on silica gel and their characterization for trace metal preconcentration. Analyt Chem 1992; 64: 1933–9.CrossRefGoogle Scholar
  26. 26.
    Mallick N, Rai LC. Influence of culture density, pH, organic acids and divalent cations on the removal of nutrients and metals by immobilized Anabaena doliolum and Chlorella vulgaris. World J Microbiol Biotechnol 1993; 9: 196–201.CrossRefGoogle Scholar
  27. 27.
    Wilde EW, Benemann JR. Bioremoval of heavy metals by the use of microalgae. Biotechnol Adv 1993; 11: 781–812.CrossRefGoogle Scholar
  28. 28.
    Corder SL, Reeves M. Biosorption of nickel in complex aqueous waste streams by cyanobacteria. Appl Biochem Biotechnol 1994; 45–6: 847–59.CrossRefGoogle Scholar
  29. 29.
    Oswald WJ. Design basis for facultative and high rate ponds. In: Borowitzka MA, Mathew K eds. Waste Treatment by Algal Cultivation. Perth: Murdoch University, 1991: 1–10.Google Scholar
  30. 30.
    Borowitzka MA. Closed algal photobioreactors: design considerations for large-scale systems. J Mar Biotechnol 1996; 41185–91.Google Scholar
  31. 31.
    Borowitzka MA. Products from Algae. In: Phang SM, Lee K, Borowitzka MA, et al. eds. Algal Biotechnology in the Asia-Pacific Region. Kuala Lumpur: Institute of Advanced Studies, University of Malaya, 1994: 5–15.Google Scholar
  32. 32.
    Borowitzka I.J. Commercial Dunaliella production: history of development. In: Villa TG, Abalde J, eds. Profiles on Biotechnology. Santiago de Compostela: Universidade de Compostela, 1992: 233–45.Google Scholar
  33. 33.
    Lewis MA. Chronic toxicities of surfactants and detergent builders to algae–A review and risk assessment. Ecotoxicol Env Safety 1990; 20: 123–40.CrossRefGoogle Scholar
  34. 34.
    Azov Y, Shelef G, Moraine R, et al. Alternative operating strategies for high-rate sewage oxidation ponds. In: Shelef G, Soeder CJ, eds. Algal Biomass. Amsterdam: Elsevier/North Holland Biomedical Press, 1980: 523–9.Google Scholar
  35. 35.
    Abeliovich A. Factors limiting algal growth in high-rate oxidation ponds. In: Shelef G, Soeder CJ, eds. Algal Biomass. Amsterdam: Elsevier/North Holland Biomedical Press, 1980: 205–15.Google Scholar
  36. 36.
    Richmond A. The challenge confronting industrial microalgaculture: High photosynthetic efficiency in large-scale reactors. Hydrobiologia 1987; 151 /152: 117–21.CrossRefGoogle Scholar
  37. 37.
    Fontes AG, Vargas MA, Moreno J et al. Factors affecting the production of biomass by a nitrogen-fixing blue-green alga in outdoor culture. Biomass 1987; 13: 33–43.CrossRefGoogle Scholar
  38. 38.
    Richmond A. Large scale microalgal culture and applications. Prog Phycol Res 1990; 7: 269–330.Google Scholar
  39. 39.
    Tamiya H, Hase E, Shibata K et al. Kinetics of growth of Chlorella, with special reference to its dependance on quantity of available light and on temperature. In: Burlew JS ed. Algal Culture. From Laboratory to Pilot Plant. Washington DC: Carnegie Institution of Washington, 1953: 204–32.Google Scholar
  40. 40.
    Richmond A. Open systems for the mass production of photoautotrophic micro-algae outdoors–Physiological principles. J Appl Phycol 1992; 4: 281–6.CrossRefGoogle Scholar
  41. 41.
    Vonshak A, Abeliovich A, Boussiba S et al. Production of Spirulina biomass: effects of environmental factors and population density. Biomass 1982; 2: 175–85.CrossRefGoogle Scholar
  42. 42.
    Kirk JTO, Light and Photosynthesis in Aquatic Ecosystems. Cambridge: Cambridge University Press, 1983.Google Scholar
  43. 43.
    Kroon BMA, Ketelaars HAM, Fallowfield HJ et al. Modelling microalgal productivity in a high rate algal pond based on wavelength dependent optical properties. J Appl Phycol 1989; 1: 247–56.CrossRefGoogle Scholar
  44. 44.
    Falkowski PG, Greene R, Kolber Z. Light utilization and photoinhibition of photosynthesis in marine phytoplankton. In: Baker NR, Bowyer JR, eds. The Photo-Inhibition of Photosynthesis: From Molecular Mechanisms to the Field. Oxford: Bios Scientific Publishers, 1994: 407–32.Google Scholar
  45. 45.
    Grande KD, Bender ML, Irwin B et al. A comparison of net and gross rates of oxygen production as a function of light intensity in some natural plankton populations and in a Synechococcus culture. J Plankt Res 1991; 13: 1–16.CrossRefGoogle Scholar
  46. 46.
    Richmond A, Vonshak A. Spirulina culture in Israel. Arch Hydrobiol 1978; 11: 274–80.Google Scholar
  47. 47.
    Richmond A, Grobbelaar JU. Factors affecting the output rate of Spirulina platensis with reference to mass cultivation. Biomass 1986; 10: 253–64.CrossRefGoogle Scholar
  48. 48.
    Hu Q, Richmond A. Optimising the population density in Isochrysis galbana grown outdoors in a glass column photobioreactor. J Appl Phycol 1994; 6: 391–6.CrossRefGoogle Scholar
  49. 49.
    Richmond A. Efficient utilization of high irradiance for production of photoautotrophic cell mass: a survey. J Appl Phycol 1996; 8: 381–7.CrossRefGoogle Scholar
  50. 50.
    Laws EA, Terry KL, Wickman J et al. A simple algal production system designed to utilize the flashing light effect. Biotechnol Bioeng 1983; 25: 2319–35.CrossRefGoogle Scholar
  51. 51.
    Terry KL. Photosynthesis in modulated light: quantitative dependence of photosynthetic enhancement on flashing rate. Biotechnol Bioeng 1986; 28: 988–95.CrossRefGoogle Scholar
  52. 52.
    Grobbelaar JU, Nedbal L, Tichy V. Influence of high frequency light/dark fluctuations on photosynthetic characteristics of microalgae photoacclimated to different light intensities and implications for mass algal cultivation. J Appl Phycol 1996; 8: 335–43.CrossRefGoogle Scholar
  53. 53.
    Doucha J, Livansky K. Novel outdoor thin-layer high density microalgal culture system: Productivity and operational parameters. Algol Stud 1995; 76: 129–47.Google Scholar
  54. 54.
    Jitts HR, McAllister CD, Stephens K et al. The cell division rates of some marine phytoplankters as a function of light and temperature. J Fish Res Bd Canada 1964; 21: 139–57.CrossRefGoogle Scholar
  55. 55.
    Dauta A, Devaux J, Piquemal F et al. Growth rate of four freshwater algae in relation to light and temperature. Hydrobiologia 1990; 207: 221–6.CrossRefGoogle Scholar
  56. 56.
    Talbot P, Thébault JM, Dauta A et al. A comparative study and mathematical modeling of temperature, light and growth of three microalgae potentially useful for wastewater treatment. Wat Res 1991; 25: 465–72.CrossRefGoogle Scholar
  57. 57.
    Castillo J, Merino F, Heussler P. Production and ecological implications of algae mass culture under Peruvian conditions. In: Shelef G, Soeder CJ, eds. Algal Biomass. Amsterdam: Elsevier/North-Holland Biomedical Press, 1980: 123–34.Google Scholar
  58. 58.
    De Pauw N, Verlet H, De Leenheer L. Heated and unheated outdoor cultures of marine algae with animal manure. In: Shelef G, Soeder CJ eds. Algal Biomass. Amsterdam: Elsevier/North Holland Biomedical Press, 1980: 315–41.Google Scholar
  59. 59.
    Richmond A, Vonshak A, Arad S. Environmental limitations in outdoor production of algal biomass. In: Shelef G, Soeder CJ, eds. Algal Biomass. Amsterdam: Elsevier/North Holland Biomedical Press, 1980: 65–72.Google Scholar
  60. 60.
    Pouliot Y, de la Noue J. Development of a pilot-scale facility for wastewater treatment and microalgae production (In French). Rev Franc Sci de L’eau 1985; 4: 207–22.Google Scholar
  61. 61.
    Guterstam B, Todd J. Ecological engineering for wastewater treatment and its application in New England and Sweden. Ambio 1990; 19: 173–5.Google Scholar
  62. 62.
    Lee Y-K, Tan H-M, Hew C-S. The effect of growth temperature on the bioengergetics of photosynthetic algal cultures. Biotechnol Bioeng 1985; 27: 555–61.CrossRefGoogle Scholar
  63. 63.
    Bedell GW. Stimulation of commercial algal biomass production by the use of geothermal water for temperature control. Biotechnol Bioeng 1985; 27: 1063–6.CrossRefGoogle Scholar
  64. 64.
    Torzillo G, Sacchi A, Materassi R et al. Effect of temperature on yield and night biomass loss in Spirulina platensis grown outdoors in tubular photobioreactors. J Appl Phycol 1991; 3: 103–9.CrossRefGoogle Scholar
  65. 65.
    Torzillo G, Sacchi A, Materassi R. Temperature as an important factor affecting productivity and night biomass loss in Spirulina platensis grown outdoors in tubular photobioreactors. Bioresource Technol 1991; 38: 95–100.CrossRefGoogle Scholar
  66. 66.
    Cromar NJ, Fallowfield HJ. Separation of components of the biomass from high rate algal ponds using percoll density gradient centrifugation. J Appl Phycol 1992; 4: 157–63.CrossRefGoogle Scholar
  67. 67.
    Geider RJ, Osborne BA. Respiration and microalgal growth: a review of the quantitative relationship between dark respiration and growth. New Phytol 1989; 112: 327–41.CrossRefGoogle Scholar
  68. 68.
    Martin NJ, Fallowfield HJ. Computer modelling of algal waste treatment systems. Wat Sci Technol 1989; 21: 1657–60.Google Scholar
  69. 69.
    Grobbelaar JU, Soeder CJ, Stengel E. Modeling algal productivity in large outdoor cultures and waste treatment systems. Biomass 1990; 21: 297–314.CrossRefGoogle Scholar
  70. 70.
    Harris GP. Photosynthesis, productivity and growth: The physiological ecology of phytoplankton. Arch Hydrobiol Beih, Ergebn Limnol 1978; 10: 1–171.Google Scholar
  71. 71.
    Grobbelaar JU, Soeder CJ. Respiration losses in planktonic green algae cultivated in raceway ponds. J Plankt Res 1985; 7: 497–506.CrossRefGoogle Scholar
  72. 72.
    Soeder CJ. Massive cultivation of microalgae: Results and prospects. Hydrobiologia 1980; 72: 197–209.CrossRefGoogle Scholar
  73. 73.
    Berner T, Dubinsky Z, Schanz F et al. The measurement of primary productivity in a high-rate oxidation pond (HROP). J Plankt Res 1986; 8: 659–72.CrossRefGoogle Scholar
  74. 74.
    Fallowfield HJ, Mesple F, Martin NJ et al. Validation of computer models for high rate algal pond operation for wastewater treatment using data from Mediterranean and Scottish pilot scale systems-Implications for management in coastal regions. Wat Sci Technol 1992; 25: 215–24.Google Scholar
  75. 75.
    Guterman H, Vonshak A, Ben-Yaakov S. A macromodel for outdoor algal mass production. Biotechnol Bioeng 1990; 35809–19.Google Scholar
  76. 76.
    Mesple F, Casellas C, Troussellier M et al. Some difficulties in modelling chlorophyll a evolution in a high rate algal pond ecosystem. Ecol Mod 1995; 78: 25–36.CrossRefGoogle Scholar
  77. 77.
    Palmer CM. A composite rating of algae tolerating organic loading. J Phycol 1969; 5: 78–81.CrossRefGoogle Scholar
  78. 78.
    Abeliovich A. Algae in wastewater oxidation ponds. In: Richmond A, ed. CRC Handbook of Microalgal Mass Culture. Boca Raton: CRC Press, 1986: 331–8.Google Scholar
  79. 79.
    Abeliovich A, Weisman D. Role of heterotrophic nutrition in growth of the alga Scenedesmus obliquus in high rate oxidation ponds. Appl Env Microbiol 1978; 35: 32–7.Google Scholar
  80. 80.
    Marquez FJ, Nishio N, Nagai S et al. Enhancement of biomass and pigment production during growth of Spirulina platensis in mixotrophic culture. J Chem Tech Biotechnol 1995; 62: 159–64.Google Scholar
  81. 81.
    Neilson AH, Lewin RA. The uptake and utilization of organic carbon by algae: an essay in comparative biochemistry. Phycologia 1974; 13: 227–64.CrossRefGoogle Scholar
  82. 82.
    Cid A, Abalde J, Herrero C. High yield mixotrophic cultures of the marine microalga Tetraselmis suecica (Kylin) Butcher (Prasinophyceae). J Appl Phycol 1992; 4: 31–7.CrossRefGoogle Scholar
  83. 83.
    Burrell RE, Mayfield CI, Inniss WE. Biomass production from the green algae Chlorella vulgaris and Ankistrodesmus braunii cultured heterotrophically. Biotech Lett 1984; 6: 507–10.CrossRefGoogle Scholar
  84. 84.
    Martinez F, Avendafo MC, Marco E et al. Algal population and auxotrophic adaptation in a sugar refinery wastewater environment. J Gen App! Microbiol Tokyo 1987; 33: 331–41.CrossRefGoogle Scholar
  85. 85.
    Martinez F, Ortls MI. Interactions between glucose and inorganic carbon metabolism in Chlorella vulgaris strain UAM-ioi. Plant Physiol 1991; 95: 1150–5.CrossRefGoogle Scholar
  86. 86.
    Ogawa T, Aiba S. Bioenergetic analysis of mixotrophic growth in Chlorella vulgaris and Scenedesmus acutus. Biotechnol Bioeng 1981; 23: 1121–32.CrossRefGoogle Scholar
  87. 87.
    Lau PS, Tam NFY, Wong YS. Influence of organic-N sources on an algal wastewater treatment system. Resources Conservation and Recycling 1994; 11: 197–208.CrossRefGoogle Scholar
  88. 88.
    Abeliovich A, Azov Y. Toxicity of ammonia to algae in sewage oxidation ponds. Appl Env Microbiol 1976; 31: 801–6.Google Scholar
  89. 89.
    Azov Y, Goldman JC. Free ammonia inhibition of algal photosynthesis in intensive cultures. Appl Env Microbiol 1982; 43: 735–9.Google Scholar
  90. 9o.
    Thomas WH, Hastings J, Fujita M. Ammonium input to the sea via large sewage outfalls. 2. Effects of ammonia on growth and photosynthesis of southern California phytoplankton cultures. Mar Env Res 1980; 3: 291–6.CrossRefGoogle Scholar
  91. 91.
    Borowitzka MA, Borowitzka LJ. Limits to growth and carotenogenesis in laboratory and large-scale outdoor cultures of Dunaliella saliva. In: Stadler T, Mollion J, Verdus MC et al, eds. Algal Biotechnology. Barking: Elsevier Applied Science, 1988: 371–81.Google Scholar
  92. 92.
    Konig A, Pearson HW, Silva SA. Ammonia toxicity to algal growth in waste stabilisation ponds. Wat Sci Technol 1987; 19: 115–22.Google Scholar
  93. 93.
    Pouliot Y, Buelna G, Racine C et al. Culture of cyanobacteria for tertiary wastewater treatment and biomass production. Biological Wastes 1989; 29: 81–91.CrossRefGoogle Scholar
  94. 94.
    Talbot P, de la Node J. Tertiary treatment of wastewater with Phormidium bohneri (Schmidle) under various light and temperature conditions. Wat Res 1993; 27: 153–9.CrossRefGoogle Scholar
  95. 95.
    Darley WM. Algal biology: A Physiological Approach. Basic Microbiology Vol. 9, Oxford: Blackwell Scientific Publications, 1982: 168.Google Scholar
  96. 96.
    Kunikane S, Kaneko M. Growth and nutrient uptake of green alga Scenedesmus dimorphus, under a wide range of nitrogen/phosphorus ratio. II. Kinetic model. Wat Res 1984; 18: 1313–26.CrossRefGoogle Scholar
  97. 97.
    Tam NFY, Wong YS. Feasibility of using Chlorella pyrenoidosa in the removal of inorganic nutrients from primary settled sewage. In: Phang SM, Lee YK, Borowitzka MA et al, eds. Algal Biotechnology in the Asia-Pacific Region. Kuala Lumpur: Institute of Advanced Studies, University of Malaya, 1994: 291–9.Google Scholar
  98. 98.
    Lefebvre S, Hussenot J, Brossard N. Water treatment of land-based fish farm efluents by outdoor culture of marine diatoms. J Appl Phycol 1996; 8: 193–200.CrossRefGoogle Scholar
  99. 99.
    Langis R, Couture P, de la Node J et al. Induced responses on algal growth and phosphate removal by three molecular weight DOM fractions from a secondary effluent. J Wat Pollut Contr Fed 1986; 58: 1073–7.Google Scholar
  100. 100.
    Abeliovich A. The effect of unbalanced ammonia and BOD concentrations on oxidation ponds. Wat Res 1983; 17 299–305.CrossRefGoogle Scholar
  101. 101.
    de la Node J, Clouthier-Mantha L, Walsh P et al. Influence of agitation and aeration modes on biomass production by Oocystis sp. grown on wastewaters. Biomass 1984; 4: 43–58.CrossRefGoogle Scholar
  102. 102.
    Yahi H, Elmaleh S, Coma J. Algal flocculation-sedimentation by pH increase in a continuous reactor. Wat Sci Technol 1994; 30259–67.Google Scholar
  103. 103.
    Sukenik A, Shelef G. Algal autoflocculation-Verfication and proposed mechanism. Biotechnol Bioeng 1984; 26: 142–7.CrossRefGoogle Scholar
  104. 104.
    Picot B, Moersidik S, Casellas C et al. Using diurnal variations in a high rate algal pond for management pattern. Wat Sci Technol 1993; 28: 169–75.Google Scholar
  105. 105.
    Lessard P, Proulx D, Delanoue J. Nutrient removal using cyanobacteria (Phormidium bohneri): Experimental results with a batch reactor. Wat Sci Technol 1994; 30: 365–8.Google Scholar
  106. 106.
    Sukenik A, Falkowski PG, Bennett J. Potential enhancement of photosynthetic energy conversion in algal mass culture. Biotechnol Bioeng 1987; 30: 970–7.CrossRefGoogle Scholar
  107. 107.
    Manabe E, Hirosawa T, Tsuzuki M et al. Effect of near ultraviolet on growth of Chlorella cells. Physiol Plant 1986; 67: 598–603.CrossRefGoogle Scholar
  108. 108.
    Grobbelaar JU. Turbulence in mass algal cultures and the role of light dark fluctuations. J Appl Phycol 1994; 6: 331–5.CrossRefGoogle Scholar
  109. 109.
    Mitsuhashi S, Hosaka K, Tomonaga E et al. Effects of shear flow on photosynthesis in a dilute suspension of microalgae. Appl Microbiol Biotech 1995; 42: 744–9.CrossRefGoogle Scholar
  110. 110.
    Gudin C, Chaumont D. Cell fragility-the key problem of microalgae mass production in closed photobioreactors. Bioresource Technol 1991; 38: 145–51.CrossRefGoogle Scholar
  111. 110.
    Azov Y, Shelef G, Moraine R et al. Controlling algal genera in high rate wastewater oxidation ponds. In: Shelef G, Soeder CJ, eds. Algal Biomass. Amsterdam: Elsevier/North Holland Biomedical Press, 1980: 245–53.Google Scholar
  112. 112.
    Lincoln EP, Koopman B, Hall TS. Control of a unicellular blue-green alga, Synechocystis sp. in mass algal culture. Aquacult 1984; 42: 349–60.Google Scholar
  113. 113.
    Ukeles R. Inhibition of unicellular algae by synthetic surface active agents. J Phycol 1965; 1: 102–10.CrossRefGoogle Scholar
  114. 114.
    Yamane A, Okada M, Sudo R. The growth inhibition of planktonic algae due to surfactants used in washing detergents. Wat Res 1984; 9: 1101–5.CrossRefGoogle Scholar
  115. 115.
    Wängberg S, Blanck H. Multivariate patterns of algal sensitivity to chemicals in relation to phylogeny. Ecotoxicol Env Safety 1988; 16: 72–82.CrossRefGoogle Scholar
  116. 116.
    Wong SL, Wainwright JF, Pimenta J. Quantification of total and metal toxicity in wastewater using algal bioassays. Aquat Toxicol 1995; 31: 57–75.CrossRefGoogle Scholar
  117. 117.
    Wong PK, Chang L. Effects of copper, chromium and nickel ions on inorganic nitrogen and phosphorus uptake in Chlorella species. Microbios 1991; 67: 107–15.Google Scholar
  118. 118.
    Mohanty RC, Mohanty L, Mohapatra PK. Change in toxicity effect of mercury at static concentration to Chlorella vulgaris with addition of organic carbon Sources. Acta Biologica Hungarica 1993; 44: 211–22.Google Scholar
  119. 119.
    Kaplan D, Heimer YM, Abeliovich A et al. Cadmium toxicity and resistance in Chlorella sp. Plant Sci 1995; 109: 129–37.CrossRefGoogle Scholar
  120. 120.
    Chen CY. Theoretical evaluation of the inhibitory effects of mercury on algal growth at various orthophosphate levels. Wat Res 1994; 28: 931–7.CrossRefGoogle Scholar
  121. 121.
    Chen FH, Chen WQ, Dai SG. Toxicities of four arsenic species to Scenedesmus obliquus and influence of phosphate on inorganic arsenic toxicities. Toxicological and Environmental Chemistry 1994; 41: 1–7.CrossRefGoogle Scholar
  122. 122.
    Scott J. Autoinhibitor production by Chlorella vulgaris. Amer J Bot 1964; 51: 581–4.CrossRefGoogle Scholar
  123. 123.
    Pratt R, Fong J. Studies on Chlorella vulgaris. II. Further evidence that Chlorella cells form a growth-inhibiting substance. Amer J Bot 1940; 27: 431–6.CrossRefGoogle Scholar
  124. 124.
    Mandalam RK, Palsson BO. Chlorella vulgaris (Chlorellaceae) does not secrete autoinhibitors at high cell densities. Amer J Bot 1995; 82: 955–63.CrossRefGoogle Scholar
  125. 125.
    Canovas S, Casellas C, Picot B et al. Evolution annuelle du peuplement zooplanktonique dans un lagunage à haut rendement et incidence du temps de séjour. Rev Sci l’Eau 1991; 4: 263–83.Google Scholar
  126. 126.
    Groeneweg J, Klein B, Mohn FH et al. First results of outdoor treatment of pig manure with algal-bacterial systems. In: Shelef G, Soeder CJ, eds. Algal Biomass. Amsterdam: Elsevier/North Holland Biomedical Press, 1980: 255–64.Google Scholar
  127. 127.
    Grobbelaar JU. Infections: Experiences in Miniponds. UOFS Publ 1981; 3: 116–23.Google Scholar
  128. 128.
    Abeliovich A, Dickbuck S. Factors affecting infection of Scenedesmus obliquus by a Chytridium sp. in sewage oxidation ponds. Appl Env Microbiol 1977; 34: 32–7.Google Scholar
  129. 129.
    Payer HD, Pithakpol B, Nguitragool M et al. Major results of the Thai-German microalgae project at Bangkok. Arch Hydrobiol Beih 1978; 11: 41–55.Google Scholar
  130. 130.
    Berger PS, Rho J, Gunner HB. Bacterial suppression of Chlorella by hydroxylamine production. Wat Res 1979; 13: 267–73.CrossRefGoogle Scholar
  131. 131.
    Dor I, Svi B. Effect of heterotrophic bacteria on the green algae growing in wastewater. In: Shelef G, Soeder CJ eds. Algal Biomass. Amsterdam: Elsevier/NorthHolland Biomedical Press, 1980: 421–9.Google Scholar
  132. 132.
    Dor I. Effect of the green algae isolated from wastewater on the activity of sewage bacteria. In: Shelef G, Soeder CJ eds. Algal Biomass. Amsterdam: Elsevier/ North-Holland Biomedical Press, 1980: 431–5.Google Scholar
  133. 133.
    Kobbia IA, Zaki D. Biological evaluation of algal filtrates. Planta Med 1976; 30: 90–2.CrossRefGoogle Scholar
  134. 134.
    Mezrioui N, Oudra B, Oufdou K, et al. Effect of microalgae growing on wastewater batch culture on Escherichia coli and Vibrio cholerae survival. Wat Sci Technol 1994; 30295–302.Google Scholar
  135. 135.
    Sebastian S, Nair KVK. Total removal of coliforms and E. coli from domestic sewage by high-rate pond mass culture of Scenedesmus obliquus. Environ Pollut 1984; 34: 197–206.CrossRefGoogle Scholar
  136. 136.
    Shelef G, Azov Y, Moraine R et al. Algal mass production as an integral part of a wastewater treatment and reclamation system. In: Shelef G, Soeder CJ, eds. Algal Biomass. Amsterdam: Elsevier/North Holland Biomedical Press, 1980: 163–89.Google Scholar
  137. 137.
    Oswald WJ. Growth characteristics of microalgae in domestic sewage: environmental effects on productivity: Proceedings of the IBP/PP Technical Meeting, 1969.Google Scholar
  138. 138.
    Borowitzka MA. Algal biotechnology products and processes: Matching science and economics. J Appl Phycol 1992; 4267–79.Google Scholar
  139. 139.
    Carberry JB, Brunner CM. Predictions of diurnal fluctuations in an algal bacterial clay wastewater treatment system. Wat Sci Technol 1991; 23: 1553–61.Google Scholar
  140. 140.
    de la Noüe J, Proulx D. Biological tertiary treatment of urban wastewater with chitosan-immobilized Phormidium. Appl Microbiol Biotech 1988; 29: 292–7.Google Scholar
  141. 141.
    Garbisu C, Hall DO, Llama MJ, et al. Inorganic nitrogen and phosphate removal from water by free-living and polyvinyl-immobilized Phormidium laminosum in batch and continuous-flow bioreactors. Enzyme Microb Technol 1994; 16: 395–401.CrossRefGoogle Scholar
  142. 142.
    Tam NFY, Lau PS, Wong YS. Wastewater inorganic N and P removal by immobilized Chlorella vulgaris. Wat Sci Technol 1994; 30: 369–74.Google Scholar
  143. 143.
    Travesio L, Benitez F, Dupeiron R. Sewage treatment using immobilized micro-algae. Bioresource Technol 1992; 40: 183–7.CrossRefGoogle Scholar
  144. 144.
    Kaya VM, de la Noüe J, Picard G. A comparative study of four systems for tertiary wastewater treatment by Scenedesmus bicellularis: new technology for immobilization. J Appl Phycol 1995; 7: 85–95.CrossRefGoogle Scholar
  145. 145.
    Lavoie A, de la Noüe J. Hyperconcentrated culture of Scenedesmus obliquus: a new approach for wastewater tertiary treatment? Wat Res 1985; 19: 1437–42.CrossRefGoogle Scholar
  146. 146.
    Chevalier P, de la Noüe J. Efficiency of immobilized hyperconcentrated algae for ammonium and orthophosphate removal from wastewaters. Biotech Lett 1985; 7: 395–400.CrossRefGoogle Scholar
  147. 147.
    de la Noüe J, Picard GA, Piette JP et al. Utilisation de l’algue Oocystis sp. pour le traitement tertiare des eaux usees II. Effet du conditionnement prealable des cellules ex cyclostat sur leur vitesse de prise en charge de l’azote lors d’incubations de longue duree. Wat Res 1980; 14: 1125–30.CrossRefGoogle Scholar
  148. 148.
    Storandt R, Farber I, Pulz O et al. Procedure and pilot plant for the disposal of inorganic loads from circulating water in aquaculture by microalgal cultivation. In: Kretschmer P, Pulz O, Gudin C et al. eds. end European Workshop Biotechnology of Microalgae. Bergholz/ Rehbrücke: Institut fur Getreideverarbeitung GmbH, 1995: 101–4.Google Scholar
  149. 149.
    Hu Q, Guterman H, Richmond A. A flat inclined modular photobioreactor for outdoor mass cultivation of photoautotrophs. Biotechnol Bioeng 1996; 51: 51–60.CrossRefGoogle Scholar
  150. 150.
    Richmond A, Boussiba S, Vonshak A et al. A new tubular reactor for mass production of microalgae outdoors. J Appl Phycol 1993; 5: 327–32.CrossRefGoogle Scholar
  151. 151.
    Jassby AD, Platt T. Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol Oceanogr 1976; 21: 540–7.CrossRefGoogle Scholar
  152. 152.
    Platt T, Gallegos CL. Modelling primary production. In: Falkowski PG, ed. Primary Production in the Sea. NY: Plenum Press, 1980: 339–51.CrossRefGoogle Scholar
  153. 153.
    Richmond A. Outdoor mass culture of microalgae. In: Richmond A ed. CRC Handbook of Microalgal Mass Culture. Boca Raton: CRC Press, 1986: 285–329.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Michael A. Borowitzka

There are no affiliations available

Personalised recommendations