Skip to main content

Immobilized Algal Technology for Wastewater Treatment Purposes

  • Chapter
Wastewater Treatment with Algae

Part of the book series: Biotechnology Intelligence Unit ((BIOIU))

Abstract

This chapter comprises a brief review of the current literature dealing with the I use of immobilized algae for wastewater treatment purposes, together with results from some of our own experimental studies on immobilized Chlorella emersonii for the removal of phosphate-phosphorus (PO4-P) from waste waters. The intention of including these results is to highlight some of the practical advantages of using immobilized systems, and also to introduce some of the problems and limitations of such systems at the laboratory scale. Consideration of the scale-up of such processes is also included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atkinson B. Immobilized cells, their applications and potential. In: Webb C, Black GM, Atkinson B, eds. Process Engineering Aspects of Immobilized Cell Systems. Rugby: Inst Chem Eng, 1986: 3–19.

    Google Scholar 

  2. Hallier UW, Park RB. Photosynthetic light reactions in chemically fixed Anacystisnidulans, Chlorella pyrenoidosa, and Porphyridium cruentum. Physiol Plant 1969; 44: 535–539.

    Article  CAS  Google Scholar 

  3. Robinson PK, Mak AL, Trevan MD. Immobilized algae: a review. Process Biochem 1986; 21: 122–127.

    CAS  Google Scholar 

  4. Robinson PK, Reeve JO, Goulding KH. Kinetics of phosphorus uptake by immobilized Chlorella. Biotechnol Lett 1988; 10: 17–20.

    Article  CAS  Google Scholar 

  5. Wilkinson SC, Goulding KH, Robinson PK. Mercury removal by immobilized algae in batch culture systems. J Appl Phycol 1990; 2: 223–230.

    Article  Google Scholar 

  6. Caíiizares RO, Rivas L, Montes C et al. Aerated swine-wastewater treatment with K-carrageenan-immobilized Spirulina maxima. Bioresource Technol 1994; 47: 89–91.

    Article  Google Scholar 

  7. Còrdoba LT, Hernàndez EPS, Weiland P. Final treatment for cattle manure using immobilized microalgae. I. Study of the support media. Resources Consery Recycling 1995; 13: 167–175.

    Article  Google Scholar 

  8. Walker G. Algae help to clean up contaminated water. New Scientist 1991; 130 (1770): 24.

    Google Scholar 

  9. Barkley NP. Extraction of mercury from groundwater using immobilized algae. J Air Waste Man Assoc 1991; 41: 1387–1393.

    Google Scholar 

  10. Darnall DW. Removal and recovery of heavy metal ions from wastewaters using a new biosorbent; AlgaSORBm. In: Freeman HM, Sferra PR, eds. Innovative Hazardous Waste Treatment Technology Series. Biological Processes. Lancaster, Pennsylvania, USA: Technomic Publishing Co. 1991; 3: 65–72.

    Google Scholar 

  11. Lee CM, Lu CS, Lu WM et al. Removal of nitrogenous compounds from wastewaters using immobilized cyanobacteria Anabaena CH3. Environ Technol 1995; 16: 701–713.

    Article  CAS  Google Scholar 

  12. Mallick N, Rai LC. Influence of culture density, pH, organic acids and divalent cations on the removal of nutrients and metals by immobilized Anabaena doliolum and Chlorella vulgaris. World J Microbiol Biotechnol 1993; 9: 196–201.

    Article  CAS  Google Scholar 

  13. Rai LC, Mallick N. Removal and assessment of toxicity of Cu and Fe to Anabaena doliolum and Chlorella vulgaris using free and immobilized cells. World J Microbiol Biotechnol 1992; 8: 110–114.

    Article  CAS  Google Scholar 

  14. Mallick N, Rai LC. Removal of inorganic-ions from wastewaters by immobilized microalgae. World J Microbiol Biotechnol 1994; 10439–443.

    Google Scholar 

  15. Subramanian VV, Sivasubramanian V, Gowrinathan KP. Uptake and recovery of heavy-metals by immobilized cells of Aphanocapsa pulchra (Kütz) Rabenh. J Environ Sci Health 1994; A29: 1723–1733.

    Google Scholar 

  16. Vilchez C, Vega JM. Nitrite uptake by Chlamydomonas reinhardtii cells immobilized in calcium alginate. Appl Microbiol Biotechnol 1994; 41: 137–141.

    Article  CAS  Google Scholar 

  17. Vilchez C, Vega JM. Nitrate uptake by immobilized Chlamydomoas reinhardtii cells growing in airlift reactors. Enzyme Microb Technol 1995; 17: 386–390.

    Article  CAS  Google Scholar 

  18. Garbayo I, Braban C, Lobato MV, et al. Nitrate uptake by immobilized growing Chlamydomonas reinhardtii cells. In: Wijffels RH, Buitelaar RM, Bucke C et al, eds. Immobilized Cells: Basics and Applications. Amsterdam: Elsevier Science BV, 1996: 410–415.

    Google Scholar 

  19. Robinson PK, Reeve JO, Goulding KH. The biotechnological potential of immobilized microalgal cells. In: Chang S-T, Chan K-Y, Woo NYS, eds. Recent Advances in Biotechnology and Applied Biology. Hong Kong: Chinese University Press, 1988: 193–204.

    Google Scholar 

  20. Robinson PK. Effect of pre-immobilization conditions on phosphate uptake by immobilized Chlorella. Biotechnol Lett 1995; 17: 659–662.

    Article  CAS  Google Scholar 

  21. Robinson PK, Reeve JO, Goulding KH. Phosphorus uptake kinetics of immobilized Chlorella in batch and continuous-flow culture. Enzyme Microb Technol 1989; 11: 590–596.

    Article  CAS  Google Scholar 

  22. Robinson PK, Wilkinson SC. Removal of aqueous mercury and phosphate by gel-entrapped Chlorella in packed-bed reactors. Enzyme Microb Technol 1994; 16: 802–807.

    Article  CAS  Google Scholar 

  23. Wilkinson SC, Goulding KH, Robinson PK. Mercury accumulation and volatilization in immobilized algal cell systems. Biotechnol Lett 1989; 11: 861–864.

    Article  CAS  Google Scholar 

  24. Wilkinson SC. The potential of immobilized algal cell systems for the removal of mercury from aqueous solution. Univ Central Lancashire, UK: PhD thesis, 1992.

    Google Scholar 

  25. da Costa ACA, Leite SGF. Metals biosorption by sodium alginate immobilized Chlorella homosphaera cells. Biotechnol Lett 1991; 13: 559–562.

    Article  Google Scholar 

  26. Nakajima A, Horikoshi T, Sakaguchi T. Recovery of uranium by immobilized microorganisms. Eur J Appl Microbiol Biotechnol 1982; 16: 88–91.

    Article  CAS  Google Scholar 

  27. Darnall DW, Greene B, Henzl MT et al. Selective recovery of gold and other metal ions from an algal biomass. Environ Sci Technol 1986; 20: 206–208.

    Article  CAS  Google Scholar 

  28. Tam NFY, Lau PS, Wong YS. Wastewater inorganic N and P-removal by immobilized Chlorella vulgaris. Water Sci Technol 1994; 30: 369–374.

    CAS  Google Scholar 

  29. Travieso L, Benitez F, Weiland P et al. Experiments on immobilization of microalgae for nutrient removal in wastewater treatments. Bioresource Technol 1996; 55181–186.

    Google Scholar 

  30. Travieso L, Benitez F, Dupeiron R. Sewage treatment using immobilized micro-algae. Bioresource Technol 1992; 40: 183–187.

    Article  CAS  Google Scholar 

  31. Megharaj M, Pearson HW, Venkateswarlu K. Removal of nitrogen and phosphorus by immobilized cells of Chlorella vulgaris and Scenedesmus bijugatus isolated from soil. Enzyme Microb Technol 1992; 14: 656–658.

    Article  CAS  Google Scholar 

  32. Bender J, Gould JP, Vatcharapijarn Y et al. Removal of zinc and manganese from contaminated water with cyanobacteria mats. Wat Environ Res 1994; 66: 679–683.

    Article  CAS  Google Scholar 

  33. Singh SP, Singh RK, Pandey PK et al. Factors regulating copper uptake in free and immobilized cyanobacterium. Folia Microbiol 1992; 37: 315–320.

    Article  CAS  Google Scholar 

  34. Singh SP, Verma SK, Singh RK et al. Copper uptake by free and immobilized cyanobacterium. FEMS Microbiol Lett 1989; 60: 193–196.

    Article  CAS  Google Scholar 

  35. Pant A, Srivastava SC, Singh SP. Methyl mercury uptake by free and immobilized cyanobacterium. BioMetals 1992; 5229–234.

    Google Scholar 

  36. de la Noüe J, Proulx D. Tertiary treatment of urban wastewaters by chitosanimmobilized Phormidium sp. In: Stadler T, Mollion J, Verdus M-C et al, eds. Algal Biotechnology. London: Elsevier, 1988: 159–168.

    Google Scholar 

  37. de la Noüe J, Proulx D. Biological tertiary treatment of urban wastewaters with chitosan-immobilized Phormidium. Appl Microbiol Biotechnol 1988; 29: 292–297.

    Google Scholar 

  38. Garbisu C, Hall DO, Serra JL. Removal of phosphate by foam-immobilized Phormidium laminosum in batch and continuous-flow bioreactors. J Chem Tech Biotechnol 1993; 57: 181–189.

    Google Scholar 

  39. Garbisu C, Hall DO, Serra JL. Nitrate and nitrite uptake by free-living and immobilized N-starved cells of Phormidium laminosum. J Appl Phycol 1992; 4: 139–148.

    Article  CAS  Google Scholar 

  40. Garbisu C., Gil JM, Bazin MJ et al. Removal of nitrate from water by foam-immobilized Phormidium laminosum in batch and continuous-flow bioreactors. J Appl Phycol 1991; 3: 221–234.

    Article  CAS  Google Scholar 

  41. Pore RS, Sorenson WG. Kepone removal from aqueous solution by immobilized algae. J Environ Sci Health 1981; A16: 51–63.

    Article  Google Scholar 

  42. Tong C, Ramelow US, Ramelow GJ. Evaluation of polymeric supports for immobilizing biomass to prepare sorbent materials for metals. Int J Environ Analyt Chem 1994; 56175–191.

    Google Scholar 

  43. Ramelow US, Guidry CN, Fisk SD. A kinetic study of metal ion binding by biomass immobilized in polymers. J Hazard Materials 1996; 46: 37–55.

    Article  CAS  Google Scholar 

  44. Chevalier P, de la Noüe J. Wastewater nutrient removal with microalgae immobilized in carrageenan. Enzyme Microb Technol 1985; 7: 621–624.

    Article  CAS  Google Scholar 

  45. Kaya VM, de la Noüe J, Picard G. A comparative study of four systems for tertiary wastewater treatment by Scenedesmus bicellularis new technology for immobilization. J Appl Phycol 1995; 7: 85–95.

    Article  CAS  Google Scholar 

  46. Kaya VM, Picard G. The viability of Scenedesmus bicellularis cells immobilized on alginate screens following nutrient starvation in air at 100% relative-humidity. Biotechnol Bioeng 1995; 46: 459–464.

    Article  CAS  Google Scholar 

  47. Kaya VM, Goulet J, de la Noüe J et al. Effect of intermittent CO2 enrichment during nutrient starvation on tertiary treatment of wastewater by alginate-immobilized Scenedesmus bicellularis. Enzyme Microb Technol 1996; i8: 550–554.

    Google Scholar 

  48. Kaya VM, Picard G. Stability of chitosan gel as entrapment matrix of viable Scenedesmus bicellularis cells immobilized on screens for tertiary treatment of wastewater. Bioresource Technol 1996; 56: 147–155.

    Google Scholar 

  49. Urrutia I, Serra JL, Llama MJ. Nitrate removal from water by Scenedesmus obliquus immobilized in polymeric foams. Enzyme Microb Technol 1995; 17: 200–205.

    Google Scholar 

  50. Canizares RO, Dominguez AR, Rivas L et al. Free and immobilized cultures of Spirulina maxima for swine waste treatment. Biotechnol Lett 1993; 15: 321–326.

    Google Scholar 

  51. Chevalier P, de la Noue J. Efficiency of immobilized hyperconcentrated algae for ammonium and orthophosphorus removal from wastewaters. Biotechnol Lett 1985; 7: 395–400.

    Google Scholar 

  52. Musgrave SC, Kerby NW, Codd GA et al. Sustained ammonia production by immobilized filaments of the nitrogen-fixing cyanobacterium Anabaena 27893. Biotechnol Lett 1982; 4: 647–652.

    Article  CAS  Google Scholar 

  53. Musgrave SC, Kerby NW, Codd GA et al. Structural features of calcium alginate entrapped cyanobacteria modified for ammonia production. Eur J Appl Microbiol Biotechnol 1983; 17: 133–136.

    Article  Google Scholar 

  54. Rao KK, Muallem A, Bruce D et al Immobilization of chloroplasts, algae and hydrogenases in various solid supports for the photoproduction of hydrogen. Biochem Soc Trans 1982; 10: 527–528.

    CAS  Google Scholar 

  55. Muallem A, Bruce D, Hall DO. Photoproduction of H2 and NADPH2 by polyurethane-immobilized cyanobacteria. Biotechnol Lett 1983; 5365–368.

    Google Scholar 

  56. Kierstan M, Bucke C. The immobilization of microbial cells, subcellular organelles, and enzymes in calcium alginate gels. Biotechnol Bioeng 1977; 19: 387–397.

    Google Scholar 

  57. Robinson PK, Goulding KH, Mak AL et al. Factors affecting the growth characteristics of alginate-entrapped Chlorella. Enzyme Microb Technol 1986; 8: 729–733.

    Google Scholar 

  58. Mak AL, Trevan MD. Urea as a nitrogen source for calcium-alginate immobilized Chlorella. Enzyme Microb Technol 1988; 10: 207–213.

    Article  CAS  Google Scholar 

  59. Robinson PK, Dainty AL, Goulding KH et al. Physiology of alginate-immobilized Chlorella. Enzyme Microb Technol 1985; 7: 212–216.

    CAS  Google Scholar 

  60. Dainty AL, Goulding KH, Robinson PK et al. Stability of alginate-immobilized algal cells. Biotechnol Bioeng 1986; 28: 210–216.

    Article  CAS  Google Scholar 

  61. Smidsrod O, Skjâk-Bræk G. Alginate as immobilization matrix for cells. Trends Biotechnol 1990; 8: 71–78.

    Article  CAS  Google Scholar 

  62. Black GM. Characteristics and performance of immobilized cell reactors. In: Webb C, Black GM, Atkinson B, eds. Process Engineering Aspects of Immobilized Cell Systems. Rugby: The Institution of Chemical Engineers, 1986: 75–86.

    Google Scholar 

  63. Golterman HL, Clymo RS, Ohnstad MAM. Methods for Physical and Chemical Analysis of Fresh Waters. 2nd ed. Oxford: Blackwell Scientific Publications, 1978.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Robinson, P.K. (1998). Immobilized Algal Technology for Wastewater Treatment Purposes. In: Wong, YS., Tam, N.F.Y. (eds) Wastewater Treatment with Algae. Biotechnology Intelligence Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10863-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10863-5_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-10865-9

  • Online ISBN: 978-3-662-10863-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics