Advertisement

Wafer Bonding pp 327-357 | Cite as

Wafer Direct Bonding for High-Brightness Light-Emitting Diodes and Vertical-Cavity Surface-Emitting Lasers

  • A. Plößl
Part of the Springer Series in MATERIALS SCIENCE book series (SSMATERIALS, volume 75)

Abstract

Light-emitting diodes (LEDs) are semiconductor devices that convert electrical energy into optical radiation by electroluminescence. Although semiconductor electroluminescence was described almost a century ago [1], only in the 1960s did it start to be investigated thoroughly and industrially manufactured LEDs become available. For most of the time, their use was confined to indicator lamps in electronic consumer appliances. When in the 1990s the organo-metallic growth [2,3] of high-quality A1GaInP and GaInN layers became viable, this materials science breakthrough opened up a whole range of new applications for the LED. With the advent of these high-brightness LEDs the entire visible emission spectrum is being covered: A1GaInP ranging from red to yellow, GaInN from green to violet. Hence white light can be generated, be it through a combination of red green and blue LEDs or through the partial conversion of blue or violet light by combination with a phosphor, and this gives LEDs access to the emerging field of semiconductor illumination and lighting.

Keywords

Epitaxial Layer GaAs Substrate Distribute Bragg Reflector Isothermal Solidification Wafer Bonding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Round HJ (1907) A note on carborundum. Electrical World 49: 309Google Scholar
  2. 2.
    Stringfellow GB, Craford MG (eds) (1997) Semiconductors and Semimetals vol 48: High Brightness Light-emitting Diodes. Academic Press, San DiegoGoogle Scholar
  3. 3.
    Nakamura S, Pearton S, Fasol G (2000) The blue laser diode: the complete story, 2nd edn. Springer, BerlinGoogle Scholar
  4. 4.
    Bergh AA, Dean PJ (1976) Light-emitting diodes. Clarendon, OxfordGoogle Scholar
  5. 5.
    Streubel K, Linder N, Wirth R, Jaeger A. (2002) High brightness AlGaInP light-emitting diodes. IEEE Journal of Selected Topics in Quantum Electronics 8: 321–32CrossRefGoogle Scholar
  6. 6.
    Madelung 0 (1996) Semiconductors - basic data, 2nd edn. Springer, BerlinCrossRefGoogle Scholar
  7. 7.
    Carr WN (1966) Photometric figures of merit for semiconductor luminescent sources operating in spontaneous mode. Infrared Physics 6: 1–19ADSCrossRefGoogle Scholar
  8. 8.
    Kish FA, DeFevere DA, Vanderwater DA, Trott GR, Weiss RJ, Major JS Jr (1994) High luminous flux semiconductor wafer-bonded A1GaInP/GaP large-area emitters. Electron Lett 30: 1790–1792CrossRefGoogle Scholar
  9. 9.
    Kish FA, Steranka FM, DeFevere DC, Vanderwater DA, Park KG, Kuo CP, Osentowski TD, Peanasky MJ, Yu JG, Fletcher RM, Steigerwald DA, Craford MG, Robbins VM (1994b) Very high-efficiency semiconductor wafer-bonded transparent-substrate (Al Gai_X)o.sIno.5P/GaP light-emitting diodes. Appl Phys Lett 64: 2839–2841ADSCrossRefGoogle Scholar
  10. 10.
    P1501 A (2001): Verfahren zum Herstellen eines optoelektronischen Bauelements. Patent Application: DE19959I82A1 OffenlegungsschriftGoogle Scholar
  11. 11.
    Streubel K (2001): Verfahren zum Herstellen eines optisch transparenten substrates and Verfahren zum Herstellen eines lichtemittierenden Halbleiterchips. Patent Application: DE10008583A1 OffenlegungsschriftGoogle Scholar
  12. 12.
    Sheu JK, Su YK, Chang SJ, Jou MJ, Liu CC, Chi GC (1998) Investigation of wafer-bonded (AlxGal—x)0.5In0.5P/GaP light-emitting diodes. IEE ProceedingsOptoelectronics 145: 248–252CrossRefGoogle Scholar
  13. 13.
    Ascheron C (1991) Proton beam modification of selected AmBv compounds. Phys Status Solidi A 124: 11–55ADSCrossRefGoogle Scholar
  14. 14.
    Kish FA, Fletcher RM (1997) AIGaInP Light-emitting diodes. In: Stringfellow GB, Craford MG (eds) Semiconductor and Semimetals, Vol 48: High Brightness Light-emitting Diodes. Academic Press, San DiegoGoogle Scholar
  15. 15.
    Gardner NF, Chui HC, Chen EI, Krames MR, Huang J-W, Kish FA, Stockman SA, Kocot CP, Tan TS, Moll N (1999) 1.4* efficiency improvement in transparent-substrate (A1XGaI_x)o.5In05P light-emitting diodes with thin (__2000A) active regions. Appl Phys Lett 74:2230–2232Google Scholar
  16. 16.
    Krames MR, Ochiai-Holcomb M, Höfler GE, Carter-Coman C, Chen EI, Tan I-H, Grillot P, Gardner NF, Chui HC, Huang J-W, Stockman SA, Kish FA, Craford MG, Tan TS, Kocot CP, Hueschen M, Posselt J, Loh B, Sasser G, Collins D (1999) High-power truncated-inverted-pyramid (Al Gai_z)0.5In0.5P/GaP light-emitting diodes exhibiting >50% external quantum efficiency. Appl Phys Lett 75: 2365–2367ADSCrossRefGoogle Scholar
  17. 17.
    Akatsu T, Plö131 A, Stenzel H, Gösele U (1999) GaAs wafer bonding by atomic hydrogen surface cleaning. J Appl Phys 86: 7146–7150ADSCrossRefGoogle Scholar
  18. 18.
    Watanabe M, Takiguchi H (1994): A method for producing a light-emitting diode having a transparent substrate. (assigned to Sharp Kabushiki Kaisha) Application: Japan 22946 /93, 10 Feb 1993. European Patent 611131B1, issued 17 Aug 1994.Google Scholar
  19. 19.
    Shoon-Jinn Chang, Jinn-Kong Sheu, Yan-Kuin Su, Ming-Jiunn Jou, Gou-Chung Chi (1996) AlGaInP/GaP light-emitting diodes fabricated by wafer direct bonding technology. Jpn J Appl Phys 1, Regul Pap Short Notes Rev Pap 35: 4199–4202Google Scholar
  20. 20.
    Kish FA, Vanderwater DA, Peanasky MJ, Ludowise MJ, Hummel SG, Rosner SJ (1995) Low-resistance ohmic conduction across compound semiconductor wafer-bonded interfaces. Appl Phys Lett 67: 2060–2062ADSCrossRefGoogle Scholar
  21. 21.
    Babic DI, Bowers JE, Hu EL, Yang L, Carey K (1997) Wafer fusion for surface-normal optoelectronic device applications. lot J High Speed Electron Syst 8: 357–376Google Scholar
  22. 22.
    O’Shea JJ, Camras MD, Wynne D, Höfler GE (2001) Evidence for voltage drops at misaligned wafer-bonded interfaces of AlGahiP light-emitting diodes by electrostatic force microscopy. J Appl Phys 90: 4791–4795ADSCrossRefGoogle Scholar
  23. 23.
    Srikant V, Clarke DR, Evans PV (1996) Simulation of electron transport across charged grain boundaries. Appl Phys Lett 69: 1755–1757ADSCrossRefGoogle Scholar
  24. 24.
    Srikant V, Clarke DK (1998) On the equilibrium charge density at tilt grain boundaries. J Appl Phys 83: 5515–5521ADSCrossRefGoogle Scholar
  25. 25.
    Höfler GE, Vanderwater DA, DeFevere DC, Kish FA, Camras MD, Steranka FM, Tan I-H (1996) Wafer bonding of 50—mm diameter GaP to AlGaInP-GaP light-emitting diode wafers. Appl Phys Lett 69: 803–805ADSCrossRefGoogle Scholar
  26. 26.
    Yablonovitch E, Gmitter T, Harbison JP, Bhat R (1987) Extreme selectivity in the liftoff of epitaxial GaAs films. Appl Phys Lett 51: 2222–2224ADSCrossRefGoogle Scholar
  27. 27.
    Schnitzler I, Yablonovitch E, Caneau C, Gmitter TJ (1993) Ultra-high spontaneous emission quantum efficiency, 99.7 internally and 72 externally, from AlGaAs/GaAs/AlGaAs heterostructures. Appl Phys Lett 62: 131–133ADSCrossRefGoogle Scholar
  28. 28.
    Hill A, Wallach ER (1989) Modelling solid-state diffusion bonding. Acta Metallurgica 37: 2425–2437CrossRefGoogle Scholar
  29. 29.
    Bernstein L (1966) Semiconductor joining by the solid-liquid-interdiffusion (SLID) process. J Electrochem Soc 113: 1282–1288CrossRefGoogle Scholar
  30. 30.
    Schmid-Fetzer R (1995) Fundamentals of bonding by isothermal solidifiaction for high temperature semiconductor applications. In: Lin RY, Chang YA, Reddy RG, Liu CT (eds) Design Fundamentals of High Temperature Composites, Intermetallics, and Metal-Ceramics Systems. The Minerals, Metals & Materials SocietyGoogle Scholar
  31. 31.
    Chen TD, Spaziani SM, Vaccaro K, Lorenzo JP, Jokerst NM (2000) Epilayer transfer for integration of III—V photodetectors onto a silicon platform using Au-Sn and Pd-Ge bonding. In: International Conference on Indium Phosphide and Related Materials. IEEE, Piscataway, NJ, USA (Williamsburg, VA, USA, 14–18 May 2000), pp. 502505Google Scholar
  32. 32.
    Horng RH, Wuu DS, Wei SC, Huang MF, Chang KH, Liu PH, Lin KC (1999) A1GaInP/AuBe/glass light-emitting diodes fabricated by wafer bonding technology. Appl Phys Lett 75: 154–156ADSCrossRefGoogle Scholar
  33. 33.
    Horng RH, Wuu DS, Wei SC, Tseng CY, Huang MF, Chang KH, Liu PH, Lin KC (1999) AIGaInP light-emitting diodes with mirror substrates fabricated by wafer bonding. Appl Phys Lett 75: 3054–3056ADSCrossRefGoogle Scholar
  34. 34.
    Horng R, Wuu D, Peng W, Huang M, Liu P, Seieh C, Lin K (2000) Performance and reliability of wafer-bonded A1GaInP/mirror/Si light-emitting diodes. Proc SPIE 4078: 507–513CrossRefGoogle Scholar
  35. 35.
    Shoou-Jinn Chang, Yan-Kuin Su, Yang T, Chih-Sung Chang, Tzer-Peng Chen, KuoHsin Huang (2002) A1GaInP-sapphire glue bonded light-emitting diodes. IEEE Journal of Quantum Electronics 38: 1390–1394ADSCrossRefGoogle Scholar
  36. 36.
    Arokiaraj J, Ishikawa H, Soga T, Egawa T, Jimba T, Umeno M (2000) Bonding of GaN with Si using selenium sulphide (SeS2) and laser lift-off. Proceedings of International Workshop on Nitride Semiconductors. Inst Pure & Appl Phys, pp. 754–7Google Scholar
  37. 37.
    Arokiaraj J, Okui H, Taguchi H, Soga T, Jimbo T, Umeno M (2000) Electrical characteristics of GaAs bonded to Si using SeS2 technique. Jpn J Appl Phys 39: L911 — L913ADSCrossRefGoogle Scholar
  38. 38.
    Wong WS, Sands T, Cheung NW, Kneissl M, Bour DP, Mei P, Romano LT, Johnson NM (1999) Fabrication of thin-film InGaN light-emitting diode membranes by laser lift-off. Appl Phys Lett 75: 1360–1362ADSCrossRefGoogle Scholar
  39. 39.
    Illek S, Iakob U, Plössl A, Stauß P, Streubel K, Wegleiter W, Wirth R (2003) Buried micro-reflectors boost performance of AlGatnP LEDs. Compound Semiconductor 8: 3942Google Scholar
  40. 40.
    Illek S, Pietzonka I, Plössl A, Stauss P, Wegleiter W, Windisch R, Wirth R, Zull H, Streubel K (2003) Scalability of buried micro-reflector light-emitting diodes for high-current applications. In: Schubert EF, Yao HW, Linden KJ, McGraw DJ (eds) Proceedings of SPIE, 4996: Light-emitting diodes: research, manufacturing, and applications VII. SPIE, Bellingham, WA, USA, pp. 18–25CrossRefGoogle Scholar
  41. 41.
    Kelly MK, Ambacher O, Dimitrov R, Handschuh R, Stutzmann M (1997). Phys Status Solidi A 159: R3ADSCrossRefGoogle Scholar
  42. 42.
    Wong WS, Sands T, Cheung NW (1998) Damage-free separation of GaN thin films from sapphire substrates. Appl Phys Lett 72: 599–601ADSCrossRefGoogle Scholar
  43. 43.
    Härle V, Hahn B, Kaiser S, Weimar A, Eisert D, Bader S, Plössl A, Eberhard F (2003) Light extraction technologies for high-efficiency GaInN-LED devices. In: Schubert EF, 356 A. Plößl Yao HW, Linden KJ, McGraw DJ (eds) Proceedings of SPIE, 4996: Light-emitting diodes: research, manufacturing, and applications VII. SPIE, Bellingham, WA, USA, pp. 133–138Google Scholar
  44. 44.
    Flandorfer H (2002) Phase relationships in the In-rich part of the In-Pd system. Journal of Alloys and Compounds 336: 176–180CrossRefGoogle Scholar
  45. 45.
    Quitoriano NJ, Wong WS, Tsakalakos L, Cho Y, Sands T (2001) Kinetics of the Pd/In thin-film bilayer reaction: Implications for transient-liquid-phase wafer bonding. J Electron Mater 30: 1471–1475Google Scholar
  46. 46.
    Li HE, Iga K (eds) (2001) Springer Series in Photonics, Vol 6: Vertical-cavity surface-emitting laser devices. Springer, BerlinGoogle Scholar
  47. 47.
    Soda H, Iga K, Kitahara C, Suematsu Y (1979). Japanese Journal of Applied Physics 18: 2329–2330ADSCrossRefGoogle Scholar
  48. 48.
    Rakic AD, Majewski ML (2001) Cavity and mirror design for vertical-cavity surface emitting lasers. In: Li H, Iga K (eds) Vertical-cavity surface emitting laser devices. Springer, BerlinGoogle Scholar
  49. 49.
    Piprek J, Yoo SJB (1994) Thermal comparison of long-wavelength vertical-cavity surface-emitting laser diodes. Electron Lett 30: 866–868ADSCrossRefGoogle Scholar
  50. 50.
    Dudley JJ, Babic DI, Mirin R, Yang L, Miller BI, Ram RJ, Reynolds T, Hu EL, Bowers JE (1994) Low threshold, wafer fused long wavelength vertical cavity lasers. Appl Phys Lett 64: 1463–1465ADSCrossRefGoogle Scholar
  51. 51.
    Dudley JJ, Ishikawa M, Babic D1, Miller BI, Mirin R, Jiang WB, Bowers JE, Hu EL (1992) 144 °C operation of 1.3 µm InGaAsP vertical cavity lasers on GaAs substrates. Appl Phys Lett 61: 3095–3097Google Scholar
  52. 52.
    Babic DI, Streubel K, Mirin RP, Margalit NM, Bowers JE, Hu EL, Mars DE, Long Yang, Carey K (1995) Room-temperature continuous-wave operation of 1.54— µm vertical-cavity lasers. IEEE Photonics Technology Letters 7: 1225–1227ADSCrossRefGoogle Scholar
  53. 53.
    Ohiso Y, Amano C, Itoh Y, Tateno K, Tadokoro T, Takenouchi H, Kurokawa T (1996) 1.55 µm vertical-cavity surface-emitting lasers with wafer-fused InGaAsP/InPGâAs/ALAS DBRs. Electron Lett 32: 1483–1484Google Scholar
  54. 54.
    Margalit NM, Babic DI, Streubel K, Mirin RP, Naone RL, Bowers JE, Hu EL (1996) Submilliamp long wavelength vertical cavity lasers. Electron Lett 32: 1675–1677CrossRefGoogle Scholar
  55. 55.
    Black KA, Abraham P, Margalit NM, Hegblom ER, Chiu YJ, Piprek J, Bowers JE, Hu EL (1998) Double-fused 1.5 µm vertical cavity lasers with record high To of 132 K at room temperature. Electron Lett 34: 1947–1949CrossRefGoogle Scholar
  56. 56.
    Jayaraman V, Geske JC, MacDougal MH, Peters FH, Lowes TD, Char TT (1998) Uniform threshold current, continuous-wave, singlemode 1300 nm vertical cavity lasers from 0 to 70°C. Electron Lett 34: 1405–1407CrossRefGoogle Scholar
  57. 57.
    Jayaraman V, Goodnough TJ, Beam TL, Ahedo FM, Maurice RA (2000) Continuous-wave operation of single-transverse-mode 1310—nm VCSELs up to 115°C. IEEE Photonics Technology Letters 12: 1595–1597ADSCrossRefGoogle Scholar
  58. 58.
    Syrbu AV, Iakovlev VP, Berseth C-A, Dehaese O, Rudra A, Kapon E, Jacquet J, Boucart J, Stark C, Gaborit F, Sagnes I, Harmand JC, Raj R (1998) 30° C CW operation of 1.52 µm InGaAsP/ A1GaAs vertical cavity lasers with in situ built-in lateral current confinement by localised fusion. Electron Lett 34: 1744–1745Google Scholar
  59. 59.
    Qian Y, Zhu ZH, Lo YH, Huffaker DL, Deppe DG, Hou HQ, Hammons BE, Lin W, Tu YK (1997) Long wavelength (1.3 µm) vertical-cavity surface-emitting lasers with a wafer-bonded mirror and an oxygen-implanted confinement region. Appl Phys Lett 71: 25–27ADSCrossRefGoogle Scholar
  60. 60.
    Syrbu A (2002) 1 mW CW 38 nm tunable 1.5 pm VCSELS with tuning voltage below 4 V. In: European Conference on Optical Communications, Copenhagen, Denmark, Sept. 8–12, 2002, p. PD3.8Google Scholar
  61. 61.
    Liau ZL, Mull DE (1990) Wafer fusion: a novel technique for optoelectronic device fabrication and monolithic integration. Appl Phys Lett 56: 737–739ADSCrossRefGoogle Scholar
  62. 62.
    Sagalowicz L, Rudra A, Kapon E, Hammar M, Salomonsson F, Black A, Jouneau PH, Wipijewski T (2000) Defects, structure, and chemistry of InP-GaAs interfaces obtained by wafer bonding. J Appl Phys 87: 4135–4146ADSCrossRefGoogle Scholar
  63. 63.
    Salomonsson F, Streubel K, Bentell J, Hammar M, Keiper D, Westphalen R, Piprek J, Sagalowicz L, Rudra A, Behrend J (1998) Wafer fused p-InP/p-GaAs heterojunctions. J Appl Phys 83: 768–774ADSCrossRefGoogle Scholar
  64. 64.
    Akatsu T, P10131 A, Scholz R, Stenzel H, Gösele U (2001) Wafer bonding of different IlI—V compound semiconductors by atomic hydrogen surface cleaning. J Appl Phys 90: 3856–3862ADSCrossRefGoogle Scholar
  65. 65.
    Salomonsson F (2001) Processing technologies for long-wavelengths vertical-cavity surface-emitting lasers. Ph.D. Dissertation, Kungl Tekniska Högskolan, Stockholm.Google Scholar
  66. 66.
    Patriarche G, Jeannes F, Oudar J-L, Glas F (1997) Structure of the GaAs/InP interface obtained by direct wafer bonding optimised for surface emitting optical devices. J Appl Phys 82: 4892–4903ADSCrossRefGoogle Scholar
  67. 67.
    Sagalowicz L, Rudra A, Kapon E, Hammar M, Salomonsson F, Black A, Jouneau PH, Wipijewski T (2000) Defects, structure, and chemistry of InP-GaAs interfaces obtained by wafer bonding. J Appl Phys 87: 4135–4146ADSCrossRefGoogle Scholar
  68. 68.
    Jin-Phillipp NY, Liu B, Bowers JE, Hu EL, Kelsch M, Thomas J, Riihle M (2002) Interface of directly bonded InP wafers for vertical couplers. Appl Phys Lett 80: 13461348Google Scholar
  69. 69.
    Luo ZS, Cho Y, Loryuenyong V, Sands T, Cheung NW, Yoo MC (2002) Enhancement of ( InGa)N light-emitting diode performance by laser liftoff and transfer from sapphire to silicon. IEEE Photonics Technology Letters 14: 1400–1402Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • A. Plößl

There are no affiliations available

Personalised recommendations