Advertisement

Wafer Bonding pp 263-314 | Cite as

Compound Semiconductor Heterostructures by Smart Cut™: SiC On Insulator, QUASIC™ Substrates, InP and GaAs Heterostructures on Silicon

  • L. Di Cioccio
  • E. Jalaguier
  • F. Letertre
Part of the Springer Series in MATERIALS SCIENCE book series (SSMATERIALS, volume 75)

Abstract

Large band gap semiconductors will find more and more applications in such important fields as power electronics, high temperature electronics or optoelectronics where traditional semiconductors are not suitable. Very important efforts have been made in the last decade on the development of wide band gap materials. It is crucial for any industrial development to produce large-size materials with good quality at a reasonable cost. Unfortunately crystal growth of these refractory materials is difficult. For example, SiC can only be obtained using very high temperature sublimation or CVD techniques.

Keywords

Compound Semiconductor Bonding Layer High Electron Mobility Transistor GaAs Film Sheet Carrier Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bruel M (1995) Silicon on insulator material technology. Electron Lett 31: 1201–1202CrossRefGoogle Scholar
  2. 2.
    Di Cioccio L, Letiec Y, Letertre F, Jaussaud C, Bruel M (1996) Silicon Carbide on insulator formation using the Smart CutTM process. Electron Lett 32: 1144–1145CrossRefGoogle Scholar
  3. 3.
    Grisolia J, Ben Assayag G, Claverie A, Aspar B, Lagahe C, Laanab L (2000) A transmission electron microscopy quantitative study of the growth kinetics of H platelets in Si. Appl Phys Lett 76: 852–854ADSCrossRefGoogle Scholar
  4. 4.
    Templier F, Daval N, Di Cioccio L, Bourgeat D, Letertre F, Planson D, Chante JP, Billon T (2002) A new process for the fabrication of SiC power devices and process on SICOI substrates. In: MRS Fall meeting BostonGoogle Scholar
  5. 5.
    Daval N (2002) Etude de la faisabilité de Composants de Puissance sur substrats en Carbure de Silicium sur Isolant (SICOI), Thesis, November 19th 2002, INSA de Lyon, FranceGoogle Scholar
  6. 6.
    Defay E, Mandrillon V, in pressGoogle Scholar
  7. 7.
    Letertre F, Brault J, Matko I, Enjalbert F, Bellet-Amalric E, Feuillet G, Richtarch C, Faure B, Di Cioccio L, Madar R, Daudin B Smart Cut TM SICOI wafers for MBE GaN epitaxy. In: ICNS 5 2003 to be publishedGoogle Scholar
  8. 8.
    Hugonnard-Bruyère E, Cantin JL, Von Bardelebe HJ, Letertre F, Di Cioccio L, Ouisse T (1999) Studies in epitaxial 6H-SiC layers on Insulator (SiCOI) Microelectronic Eng 48: 277–80.Google Scholar
  9. 9.
    Grisolia J, Ben Assayag G, Aspar B, Jaussaud C, Di Cioccio L, Claverie A (1999) Oswald ripening of H-rich cavities in Si and Sic, In: MRS spring meeting 1999 C3Google Scholar
  10. 10.
    Joly JP, Aspar B, Bruel M, Di Cioccio L, Letertre F, Hugonnard-Bruyère E (2002) Progress in SOI structures and devices operating at extreme conditions. In: Kluwer, Netherlands, pp 31–38CrossRefGoogle Scholar
  11. 11.
    Aspar B, Lagahe C, Moriceau H, Soubie A, Bruel M, Auberton-Hervé AJ, Barge T, Maleville C (1998) SmartCutTM technology: an industrial application of ion implantation induced cavities. In: Mater Res Soc Symp Proc Vol 510, MRS Spring Meeting, Symposium Defects and Impurities in Semiconductors, pp 381–393Google Scholar
  12. 12.
    Causey RA (1978), Journal of the American Society 61: 5–6Google Scholar
  13. 13.
    Linnarsson MK et al (1996) In: Mater Res Soc Symp Proc Vol 423: 625–30CrossRefGoogle Scholar
  14. 14.
    Aspar B, Auberton-Hervé AJ (2002) Silicon wafer bonding technology for VLSI and MEMS applications, In: EMIS Processing Series N° 1 ISBN 0 85296 039 5, pp 35–49Google Scholar
  15. 15.
    Biasse B, Zussy M, Giffard B, Aspar B, Bruel M (1999) Transfert de circuits SOI sur substrat transparent par adhésion moléculaire. In: 7ème Journées Nationales de Micro-électronique et Optoélectronique, Egat (France), pp C3—C4Google Scholar
  16. 16.
    Moriceau H, Fournel F, Rayssac O, Cartier AM, Morales C, Pocas S, Zussy M, Jalaguier E, Biasse B, Bataillou B, Papon AM, Lagahe C, Aspar B, Maleville C, Letertre F, Ghyselen B, Barge T (2001) In: Semiconductor Wafer Bonding VI: Science, Technology and Applications, ISBN 1–56677 360–1, Electrochemical Society PV 200127, p 1Google Scholar
  17. 17.
    Hugonnard-Bruyère E, Lauer V, Guillot G, Jaussaud C (1999) Deep level defects in H+ implanted 6H-SiC epilayers and in SiC on insulator structures. Materials Science and Engineering B61–62: 382–388Google Scholar
  18. 18.
    Suttrop W, Pensl G, Choyke WJ et al (1992) Hall effect and infrared absorption measurements on nitrogen donors in 6H-silicon carbide. J Appl Phys 72: 3708–3713ADSCrossRefGoogle Scholar
  19. 19.
    Segall B, Alterovitz SA, Haugland EJ et al (1986) Comment on “Temperature dependence of electrical properties of non-doped and nitrogen-doped beta-SiC single crystals grown by chemical vapor deposition”. Appl Phys Lett 49: 584–586ADSCrossRefGoogle Scholar
  20. 20.
    Alekseenko MV, Zaroskii AG et al (1987) Sov Phys Semicond 21: 494–499Google Scholar
  21. 21.
    Mott NF (1987) Conduction in Non-Crystalline Materials, Oxford University PressGoogle Scholar
  22. 22.
    Neyret E, Di Cioccio L, Blanquet E, Raffy C, Pudda C, Billon T, Camassel J (2000) SiC in situ pre-growth etching: a thermodynamic study. Material Science Forum 338342: 1041CrossRefGoogle Scholar
  23. 23.
  24. 24.
    Ferro G, Planes N, Papaioannou V, Chaussende D,Monteil Y, Stoemenos J, Camassel J (1999) Mater Sci and Eng. B61–62: 586Google Scholar
  25. 25.
    Eickchoff M, Zappe S, Nielsen A, Krötz G, Obermeier E, Vouroutzis N, Stoemenos J (2001) Mater Sci Forum 353–356: 175CrossRefGoogle Scholar
  26. 26.
    Liu L, Edgar JH (2002) Substrates for GaN epitaxy. Mater Sci and Eng R37: 61–127CrossRefGoogle Scholar
  27. 27.
    Letertre F, Daval N, Templier F, Di Cioccio L, Richtarch C, Faure B, Cartier AM, Matko I Innovative substrate solutions for wide band gap materials: The Smart CutTM approach. In: ECS 2003 to be publishedGoogle Scholar
  28. 28.
    Adelmann C, Brault J, Jalabert D, Gentile P, Mariette H, Mula G, Daudin B (2002) Dynamically stable gallium surface coverages during plasma-assisted molecular-beam epitaxy of (0001) GaN. J Appl Phys 91: 9638–9645ADSCrossRefGoogle Scholar
  29. 29.
    Heying B, Wu HX, Keller S, Li Y, Kalponek D, Keller PB, Den Baars, Speck JS (1996) Role of threading dislocation structure on the x-ray diffraction peak widths in epitaxial GaN films. Appl Phys Lett 68: 643ADSCrossRefGoogle Scholar
  30. 30.
    Itoh A, Kimoto T, Matsunami H (1995) Exciton-related photoluminescence in 4H-SiC grown by step-controlled epitaxy Proc ISPSD 1995, lnst Electr Eng Japan, Yokohama, Japan, p 101Google Scholar
  31. 31.
    Rupp R, Treu M, Mauder A, Griebl E, Werner W, Bartsch W, Stephani D (2000) Performance and reliability issues of SiC-Schottky diodes. Mater Sci Forum 338342: 1167CrossRefGoogle Scholar
  32. 32.
    Zappe S, Obermeier E et al (2000) Piezoresistive High Pressure Sensor Based on 3CSiC on SOI for Oil Well Logging Applications. HITEC 2000 Conference, Albuquerque, NM, USAGoogle Scholar
  33. 33.
    Okojie RS, Ned AA, Kurtz AD, W N Car WN (1998) Characterization of highly doped n-and p-type SiC piezoresistor. IEEE transactions on electron devices 45: 785790ADSCrossRefGoogle Scholar
  34. 34.
    Ziermann R, Von Berg J, Obermeier E et al (1999) High temperature piezoresistive β -SiC on SOI pressure sensor with on chip SiC thermistor. Mater Sci and Eng 136162: 576–578Google Scholar
  35. 35.
    Ned AA, Okojie RS, Kurtz AD (1998) 6H-SiC Pressure Sensor Operation at 600°C In: Proceeding of the 1998 Fourth International High Temperature Electronics Conference HITEC IEEE, New York, NY, USA, Vol VII, pp 257–60Google Scholar
  36. 36.
    Baud L, Jaussaud C, Madar R, Bernard C, Chen JS, Nicolet MA (1995) Mater Sci and Eng B29: 126–30Google Scholar
  37. 37.
    Kennedy DP (1960) Spreading resistance in cylindric semiconductor devices J Appl Phys31:1490Google Scholar
  38. 38.
    Tong Q-Y, Gösele U (1999) Wafer Bonding and Layer Splitting for Microsystems. Adv Mater 11: 1409–1425CrossRefGoogle Scholar
  39. 39.
    Jalaguier E, Aspar B, Pocas S, Michaud JF, Zussy M, Papon AM, Bruel M (1998) Transfer of 3-inch GaAs film on silicon substrate by proton implantation process. Electron Lett 34: 408–409CrossRefGoogle Scholar
  40. 40.
    Jalaguier E, Aspar B, Pocas S, Michaud JF, Papon AM, Bruel M (1999) Transfer of thin InP films onto silicon substrate by proton implantation process. In: Proc. 11th Int Conf on InP and Related Materials, (Cat. No.99CH36362) IEEE. Piscataway, NJ, USA, pp 26–27Google Scholar
  41. 41.
    Tong Q-Y, Chao Y-L, Huang L-J, Gösele U (1999) Low temperature InP layer transfer. Electron Lett 35: 341–342CrossRefGoogle Scholar
  42. 42.
    Gawlik G, Jagielski J, Piatkowski B (2003) GaAs on Si: towards a low temperature Smart CutTM technology. Vacuum 70: 103–107CrossRefGoogle Scholar
  43. 43.
    Radu I, Szafraniak I, Scholz R, Alexe M, Gösele U (2003) Low-temperature layer splitting of (100) GaAs by He+H coimplantation and direct wafer bonding. Appl Phys Lett 82: 2413–2415ADSCrossRefGoogle Scholar
  44. 44.
    Hobart KD, Kub FJ (1999) Transfer of GaSb thin film to insulating substrate via separation by hydrogen implantation. Electron Lett 35: 675–676CrossRefGoogle Scholar
  45. 45.
    Ghyselen B et al (2003) Strained silicon-on-insulator wafers. In: Proc of Int Joint Conf on Silicon Epitaxy and Heterostructures — ICSI3, Santa Fe, NM, USA, in pressGoogle Scholar
  46. 46.
    Zahler JM, Ahn C-G, Zaghi S, Atwater HA, Chu C, Iles P (2002) Ge layer transfer to Si for photovoltaic applications. Thin Solid Films 403–404: 558–562ADSCrossRefGoogle Scholar
  47. 47.
    Huang L-J, Tong Q-Y, Gösele U (1999) Hydrogen-Implantation Induced Blistering and Layer transfer of LaAIO3 and Sapphire. Electrochemical and Solid-State Letters 2: 238–239CrossRefGoogle Scholar
  48. 48.
    Kub FJ, Hobart KD, Pond JM, Kirchoefer SW (1999) Single-crystal fervoelectric microwave capacitor fabricated by separation by hydrogen implantation. Electron Lett 35: 477–478CrossRefGoogle Scholar
  49. 49.
    Solal M, Pastureaud Th, Ballandras S, Aspar B, Biasse B, Daniau W, Hodé JM, Calisti S, Laude V (2002) Oriented lithium niobate layers transferred on 4-inch (100) silicon wafer for RF SAW devices. In: Proc IEEE Ultrasonic Symp vol 1, pp 131–133Google Scholar
  50. 50.
    Kucheyev SO, Williams JS, Jagadish C, Zou J, Li G (2002) Blistering of H-implanted GaN. J Appl Phys 91: 3928–3930ADSCrossRefGoogle Scholar
  51. 51.
    Tong Q-Y, Gutjahr K, Hopfe S, Gösele U, Lee T-H (1997) Layer splitting process in hydrogen-implanted Si, Ge, SiC, and diamond substrates. Appl Phys Lett 70: 13901392ADSCrossRefGoogle Scholar
  52. 52.
    Aspar B, Bruel B, Moriceau H, Maleville C, Poumeyrol T, Papon AM, Claverie A, Benassayag G (1997) Basic mechanisms involved in the Smart CutTM process. Microelectronic Engineering 36: 233–240CrossRefGoogle Scholar
  53. 53.
    Aspar B, Moriceau H, Jalaguier E, Lagahe C, Soubie A, Biasse B, Papon AM, Claverie A, Grisolia J, Benassayag G, Letertre F, Rayssac O, Barge T, Maleville C, Ghyselen B (2001) The Generic Nature of the Smart CutTM Process for Thin Film Transfer. J Electron Mater 30: 834–840ADSCrossRefGoogle Scholar
  54. 54.
    Gawlik G, Ratajczak R, Turos A, Jagielski, Bedell S, Lanford WL (2001) Hydrogen-ion implantation in GaAs. Vacuum 63: 697–700CrossRefGoogle Scholar
  55. 55.
    Radu I, Szafraniak I, Scholz R, Alexe M, Gösele U (2002) Blistering and exfoliation of hydrogen and helium implanted (100) GaAs. In: Proc IEEE International Semiconductor Conference vol 2, pp 305–308Google Scholar
  56. 56.
    Snyman HC, Neethling JH (1983) Transmission electron microscopy of extended crystal defects in proton bombarded and annealed GaAs. Radiat Eff 69: 199–230CrossRefGoogle Scholar
  57. 57.
    Maszara WP, Goetz G, Caviglia A, McKitterick JB (1988) Bonding of silicon wafers for silicon-on-insulator. J Appl Phys 64: 4943–4950ADSCrossRefGoogle Scholar
  58. 58.
    Aspar B, Jalaguier E, Mas A, Locatelli C, Rayssac O, Moriceau H, Pocas S, Papon AM, Michaud JF, Bruel M (1999) Smart CutTM process using metallic bonding: Application to transfer of Si, GaAs, InP thin films. Electron Lett 35: 1024–1025CrossRefGoogle Scholar
  59. 59.
    Wang LC, Zhang B, Fang F, Marshall ED, Lau SS, Sands T, Kuech TF (1988) An investigation of a non-spiking ohmic contact to n-GaAs using the Si/Pd system. J Mater Res 3: 922–930ADSCrossRefGoogle Scholar
  60. 60.
    Persson L, El Bouanani M, Hult M, Jönsson P, Whitlow HJ, Andersson M, Georgsson K, Bubb IF, Johnston PN, Walker SR, Cohen DD, Dytlewski N, Zaring C, Östling M (1996) Recoil spectrometry of thin film reactions in the Pd/InP system. J Vac Sci Technol A 14:2405–2413ADSCrossRefGoogle Scholar
  61. 61.
    Yablonovitch E, Sands T, Hwang DM, Schnitzer I, Gmitter TJ, Shastry SK, Hill DS, Fan JCC (1991) Van der Waals bonding of GaAs on Pd leads to a permanent, solidphase-topotaxial, metallurgical bond. Appl Phys Lett 59: 3159–3161ADSCrossRefGoogle Scholar
  62. 62.
    Bollaert S, Wallart X, Lepilliet S, Cappy A, Jalaguier E, Pocas S, Aspar B (2002) 0.12 μm Transferred-Substrate In0.52A10.48As/In0.53Ga0.47As HEMTs on Silicon Wafer. IEEE Electron Device Lett 23: 73–75ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • L. Di Cioccio
  • E. Jalaguier
  • F. Letertre

There are no affiliations available

Personalised recommendations