Basics of Silicon-on-Insulator (SOI) Technology

  • J.-P. Colinge
Part of the Springer Series in MATERIALS SCIENCE book series (SSMATERIALS, volume 75)

Abstract

Silicon is by far the most widely used semiconductor material. It is abundant in earth’s crust and relatively easy to convert into a high-purity single crystal. Unlike some other semiconductor materials silicon is stable when heated at high temperature, and a well-behaved insulating and passivating material, silicon dioxide, can readily be grown on it. The excellent electrical and chemical properties of thermally grown SiO2 are probably the most important factor that has made silicon such a successful semiconductor material.

Keywords

Quartz SiO2 Dioxide Microwave Argon 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nishimura T, Inoue Y, Sugahara K, Kusunoki S, Kumamoto T, Nakagawa S, Nakaya M, Horiba Y, Akasaka Y (1987) Three dimensional IC for high performance image signal processor. Technical Digest of the International Electron Devices Meeting: 111-114Google Scholar
  2. 2.
    Denton JP, Neudeck GW (1996) Fully depleted dual-gated thin-film SOI P-MOSFETs fabricated in SOI islands with an isolated buried polysilicon backgate. IEEE Electron Device Letters 17: 509–511ADSCrossRefGoogle Scholar
  3. 3.
    Izumi K, Doken M, Ariyoshi H (1978) CMOS devices fabricated on buried SiO2 layers formed by oxygen implantation into silicon. Electronics Letters 14: 593–594ADSCrossRefGoogle Scholar
  4. 4.
    Krause S, Anc M, Roitman P (1988) Evolution and future trends of SIMOX material. MRS Bulletin 23: 25–29Google Scholar
  5. 5.
    Desmond CA, Gösele U (1988) Wafer-bonding and thinning technologies. MRS Bulletin 23: 30–34Google Scholar
  6. 6.
    Viviani A, Raskin JP, Flandre D, Colinge JP, Vanoenacker D (1995) Extended study of crosstalk in SOI-SIMOX substrates. Technical Digest of IEDM: 713–716Google Scholar
  7. 7.
    Raskin JP, Viviani A, Flandre D, Colinge JP (1997) Substrate Crosstalk Reduction Using SOI Technology. IEEE Transactions on Electron Devices 44: 2252–2261ADSCrossRefGoogle Scholar
  8. 8.
    Johansson M, Berg J, Bengtsson S (2001) High frequency properties of silicon-oninsulator and novel depleted silicon materials. Solid-State Electronics 45: 567–573ADSCrossRefGoogle Scholar
  9. 9.
    Adan AO, Shitara S, Tanba N, Fukumi M, Yoshimasu T (2000) Linearity and low-noise performance of SOI MOSFETs for RF applications. Proc. IEEE Int. Conf.: 30–31Google Scholar
  10. 10.
    Kumar M, Tan Y, Sin JKO (2002) Excellent cross-talk isolation, high-Q inductors, and reduced self-heating in a TFSOI technology for system-on-a-chip applications. IEEE Transactions on Electron Devices 49: 584–589ADSCrossRefGoogle Scholar
  11. 11.
    Tihanyi J, Schlotterer H, (1975) Properties of ESFI MOS transistors due to the floating substrate and the finite volume. IEEE Transactions on Electron Devices 22: 1017–1023CrossRefGoogle Scholar
  12. 12.
    Simoen E, Magnusson U, Rotondaro A (1994) The kink-related excess low-frequency noise in silicon-on-insulator MOSTs. IEEE Transactions on Electron Devices 41: 330339Google Scholar
  13. 13.
    Kato K, Taniguchi K (1986) Numerical analysis of switching characteristics in SOI MOSFETs. IEEE Transactions on Electron Devices 33: 133–139CrossRefGoogle Scholar
  14. 14.
    Sheffield Eaton S, Lalevic B (1976) The effect of operating frequency on propagation delay in silicon-on-sapphire digital integrated circuits. Technical Digest of the International Electron Devices Meeting: 192–194Google Scholar
  15. 15.
    Tretz C, Chuang C, Terman L, Anderson C, Pelella M, Zukowski C (1999) Metastability of SOI CMOS latches. International Journal of Electronics 86: 807–813CrossRefGoogle Scholar
  16. 16.
    Edwards C, Redman-White W, Tenbroek B, Lee M, Uren M (1997) The effect of body contact series resistance on SOI CMOS amplifier stages. IEEE Transactions on Electron Devices 44: 2290–2294ADSCrossRefGoogle Scholar
  17. 17.
    Asai S, Masuhara T, Kaneko K (1978) Electron Device. US Patent 4,089, 022Google Scholar
  18. 18.
    Colinge JP (1987) An SOI voltage-controlled bipolar-MOS device. IEEE Transactions on Electron Devices 34: 845–849CrossRefGoogle Scholar
  19. 19.
    Matloubian M (1993) Analysis of hybrid-mode operation of SOI MOSFETs. Proc. IEEE Int. SOI Conf.: 106–107Google Scholar
  20. 20.
    Parke SA, Hu C, Ko PKK (1993) Bipolar-FET hybrid-mode operation of quarter-micrometer SOI MOSFET’s. IEEE Electron Device Letters 14: 234–236ADSCrossRefGoogle Scholar
  21. 21.
    Mutoh S, Douseki T, Matsuya Y, Aoki T, Yamada J (1993) 1V high-speed digital circuit technology with 0.5 µm multi-threshold CMOS. Proc. 6th Annual IEEE Int. ASIC Conf. and Exhibit:186–189Google Scholar
  22. 22.
    Assaderaghi F, Parke S, Sinitsky D, Bokor J, Ko P, Hu C (1994) A dynamic threshold voltage MOSFET ( DTMOS) for very low voltage operation. IEEE Electron Device Letters 15: 510–512Google Scholar
  23. 23.
    Colinge JP (1988) Reduction of kink effect in thin-film SOI MOSFETs. IEEE Electron Device Letters 9: 97–99ADSCrossRefGoogle Scholar
  24. 24.
    Yoshimi M, Hazama H, Takahashi M, Kambayashi S, Wada T, Kato K, Tango H (1989) Two-dimensional simulation and measurement of high-performance MOSFETs made on a very thin SOI film. IEEE Transactions on Electron Devices 36: 493–503ADSCrossRefGoogle Scholar
  25. 25.
    Colinge JP (1997) Silicon-on-insulator technology: materials to VLSI, 2nd Edition. Kluwer Academic Publishers, Boston/Dordrecht/LondonGoogle Scholar
  26. 26.
    Masuré C, Orlowski M (1989) IEEE Electron Device Letters 10: 556–558ADSCrossRefGoogle Scholar
  27. 27.
    Ernst T, Cristoloveanu S (1999) The ground-plane concept for the reduction of short-channel effects in fully-depleted SOI devices. Electrochemical Society Proc. 993: 329–334Google Scholar
  28. 28.
    Xiong W and Colinge JP (2000) Self-aligned implanted ground-plane fully depleted SOI MOSFET. Electronics Letters 35: 2059–2060CrossRefGoogle Scholar
  29. 29.
    Sekigawa T, Hayashi Y (1984) Calculated threshold-voltage characteristics of an XMOS transistor having an additional bottom gate. Solid-State Electronics 27: 827828Google Scholar
  30. 30.
    Balestra F, Cristoloveanu S, Benachir M, Elewa T (1987) Double-gate silicon-oninsulator transistor with volume inversion: A new device with greatly enhanced performance. IEEE Electron Device Letters 8: 410–412Google Scholar
  31. 31.
    Baie X, Colinge JP (1988) Two-dimensional confinement effects in gate-all-around ( GAA) MOSFETs. Solid-State Electronics 42: 499–504Google Scholar
  32. 32.
    Hisamoto D, Kaga T, Kawamoto Y and Takeda E (1990) A fully depleted lean-channel transistor ( DELTA)-a novel vertical ultrathin SOI MOSFET. IEEE Electron Device Letters 11: 36–38Google Scholar
  33. 33.
    Hisamoto D, Lee WC, Kedzierski J, Takeuchi H, Asano K, Kuo C, Anderson E, King TJ, Bokor J, Hu C (2000) FinFET-a self-aligned double-gate MOSFET scalable to 20 nm. IEEE Transactions on Electron Devices 47: 2320–2325ADSCrossRefGoogle Scholar
  34. 34.
    Colinge JP, Gao MH, Romano A, Maes H, Claeys C (1990) Silicon-on-insulator gate-all-around device. Technical Digest of IEDM: 595–598Google Scholar
  35. 35.
    Tanaka T, Suzuki K, Horie H, Sugii T (1994) Ultrafast operation of Vth-adjusted p+-n+ double-gate SOI MOSFETs. IEEE Electron Device Letters 15: 386–388ADSCrossRefGoogle Scholar
  36. 36.
    Denton JP, Neudeck GW (1996) Fully depleted dual-gated thin-film SOI P-MOSFETs fabricated in SOI islands with an isolated buried polysilicon backgate. IEEE Electron Device Letters 17: 509–511ADSCrossRefGoogle Scholar
  37. 37.
    Wong HSP, Chan KK, Taur Y (1997) Self-aligned (top and bottom) double-gate MOSFET with a 25 nm thick silicon channel Technical Digest of the International Electron Devices Meeting:427–430Google Scholar
  38. 38.
    Lee JH, Taraschi G, Wei A, Langdo TA, Fitzgerald EA, Antoniadis DA (1999) Super self-aligned double-gate (SSDG) MOSFETs utilizing oxidation rate difference and selective epitaxy. Technical Digest of the International Electron Device Meeting: 71–74Google Scholar
  39. 39.
    Baie X, Colinge JP, Bayot V, Grivei E (1995) Quantum-wire effects in thin and narrow SOI MOSFETs. Proc. IEEE Int. SOI Conf.: 66–67Google Scholar
  40. 40.
    Park JT, Colinge JP, Diaz CH (2001) Pi-gate SOI MOSFET. IEEE Electron Device Letters 22: 405–4066ADSCrossRefGoogle Scholar
  41. 41.
    Park JT, Colinge CA, Colinge JP (2001) Comparison of gate structures for short-channel SOI MOSFETs. Proc. IEEE Int. SOI Conf.: 115–116Google Scholar
  42. 42.
    Miura N, Hayashi H, Fukuda K, Nishi K (1999) Engineering systematic yield of fully-depleted SOI MOSFET. 1999 Int. Conf. on Simulation of Semiconductor Processes and Devices (SISPAD’99) IEEE, New York: 87–89.Google Scholar
  43. 43.
    Bagchi S, Grant JM, Chen J, Samavedam S, Huang F, Tobin P, Conner J, Prabhu L, Tiner M (2000) Fully depleted SOI devices with TiN gate and elevated source-drain structures. Proc. IEEE Int. SOI Conf.: 56–57Google Scholar
  44. 44.
    Chau R, Kavalieros J, Doyle B, Murthy A, Paulsen N, Lionberger D, Barlage D, Arghavani R, Roberds B, Dockzy M (2001) A 50nm depleted-substrate CMOS transistor. Technical Digest of the Int. Electron Devices Meeting: 621–624Google Scholar
  45. 45.
    Merchant S, Arnold E, Baumgart H, Mukherjee S, Pein H, Pinker R (1991) Realization of high breakdown voltage (>700 V) in thin SOI devices. Proc. 3rd Int. Symp. on Power Semiconductor Devices and ICs (ISPSD ‘81) IEEE, New York: 31–35Google Scholar
  46. 46.
    Zingg RP (2001) High-voltage, double-gate devices on silicon-on-insulator. Microelectronic Engineering 59: 461–468CrossRefGoogle Scholar
  47. 47.
    Zingg RP (2001) New benchmark for RESURF, SOI, and super junction power devices. Proc. of the 13th Int. Symp. on Power Semiconductor Devices and ICs: Inst. Electr. Eng. Japan., Tokyo, Japan 343–346Google Scholar
  48. 48.
    Letavic T, Simpson M, Arnold E, Peters E, Aquino R, Curcio J, Herko S, Mukherjee S (1999) 600 V power conversion system-on-a-chip based on thin layer silicon-oninsulator. Proc. 11th Int. Symp. on Power Semiconductor Devices and ICs (ISPSD’99) IEEE, Piscataway, NJ,:325–328Google Scholar
  49. 49.
    Zingg RP, Weijland I, van Zwol H, Boos P, Lavrijsen T, Schoenmakers T (2000) Proc. IEEE Int. SOI Conf.: 62–63Google Scholar
  50. 50.
    Oki Ships World’s First Commercial, Fully Depleted SOI LSIs. http://www.oki.com/semi/english/p_soi.htm Web press release (Feb. 13, 2002 )
  51. 51.
    Park SB, Kim YW, Ko YG, Kim KI, Kim IK, Kang HS, Yu JO, Suh KP (1999) A 0.25-gm, 600 MHz, 1.5 V, fully depleted SOI CMOS 64—bit microprocessor. IEEE Journal of Solid-State Circuits 34: 1436–1445CrossRefGoogle Scholar
  52. 52.
    Canada M, Akroul C, Cawlthron D, Corr J, Geissler S, Houle R, Kartschoke P, Kramer D, McCormick P, Rohrer N, Salem G, Warriner L (1999) A 580 Mhz RISC microprocessor in SOI. Proc. IEEE Int. Solid-State Conf.: 430–431Google Scholar
  53. 53.
    Aipperspach AG, Allen DH, Cox DT, Phan NV, Storino SN (1999) A 0.2-gm, 1.8 V, 550 Mhz, 64—bit PowerPC Microprocessor with Copper Interconnects. IEEE Journal of Solid-State Circuits 34: 1430–1435CrossRefGoogle Scholar
  54. 54.
    Shimomura K, Shimano H, Sakashita N, Okuda F, Oashi T, Yamaguchi Y, Eimori T, Inuishi M, Arimoto K, Maegawa S, Inoue Y, Komori S, Kyuma K (1997) A 1-V 46-ns 16—Mb SOI-DRAM with body control technique. IEEE Journal of Solid-State Circuits 32: 1712–1720CrossRefGoogle Scholar
  55. 55.
    Oashi T, Eimori T, Morishita F, Iwamatsu T, Yamaguchi Y, Okuda F, Shimomura K, Shimano H, Sakashita S, Arimoto K, Inoue Y, Komori S, Inuishi M, Nishimura T, Miyoshi H (1996) 16 Mb DRAM/SOI technologies for sub-1V operation“, Technical Digest of Int. Electron Devices Meeting: 609–612Google Scholar
  56. 56.
    Eimori T, Oashi T, Morishita F, Iwamatsu T, Yamaguchi Y, Okuda F, Shimomura K, Shimano H, Sakashita N, Arimoto K, Inoue Y, Komori S, Inuishi M, Nishimura T, Miyoshi H (1998) Approaches to extra low voltage DRAM operation by SOI-DRAM. IEEE Transactions on Electron Devices 45: 1000–1009ADSCrossRefGoogle Scholar
  57. 57.
    Park JW, Kim YG, Kim IK, Park KC, Lee KC, Jung TS (1999) Performance characteristics of SOI DRAM for low-power application. IEEE Journal of Solid-State Circuits 34: 1446–1453CrossRefGoogle Scholar
  58. 58.
    Koh YH, Oh MR, Lee JW, Yang JW, Lee WC, Park CK, Park JB, Heo YC, Rho KM, Lee BC, Chung MJ, Huh M, Kim HS, Choi KS, Lee WC, Lee JK, Ahn KH, Park KW, Yang JY, Kim HK, Lee DH, Hwang IS (1997) 1 Gbit SOI DRAM with fully bulk compatible process and body-contacted SOI MOSFET structure. Technical Digest of International Electron Devices Meeting: 579–582Google Scholar
  59. 59.
    Kim YW, Park SB, Ko YG, Kim KI, Kim IK, Bae KJ, Lee KW, Y JO, Chung U, Suh KP (1999) Digest of Technical Papers of the IEEE Int. Solid-State Circuits Conf.: 3233Google Scholar
  60. 60.
  61. 61.
    Colinge JP (1986) Subthreshold slope of thin-film SOI MOSFETs. IEEE Electron Device Letters 7: 244–246CrossRefGoogle Scholar
  62. 62.
    Fukuda Y, Ito S, Ito M (2001) SOI-CMOS device technology. OKl Technical Review 4: 54–57Google Scholar
  63. 63.
    Douseki T, Shigematsu S, Tanabe Y, Harada M, Inokawa H, Tsuchiya T (1966) A 0.5V SIMOX-MTCMOS circuit with 200 ps logic gate. Digest of Technical Papers of the IEEE Int. Solid-State Circuits Conf: 84–85Google Scholar
  64. 64.
    Ino M, Sawada H, Nishimura K, Urano M, Suto H, Date S, Ishiara T, Takeda T, Kado Y, Inokawa H, Tsuchiya T, Sakakibara Y, Arita Y, Izumi K, Takeya K, Sakai T (1996) 0.25 gm CMOS/SIMOX gate array LSI. Digest of Technical Papers, IEEE Int. Solid-State Circuits Conf:86–87Google Scholar
  65. 65.
    Fuse T, Oowaki Y, Terauchi M, Watanabe S, Yoshimi M, Ohuchi K, Matsunaga J (1996) 0.5V SOI CMOS pass-gate logic. Digest of Technical Papers, IEEE Int. Solid-State Circuits Conf.:88–89Google Scholar
  66. 66.
    Adan AO, Naka T, Kaneko S, Urabe D, Higashi K, Kasigawa A (1996) Device integration of a 0.35 µm CMOS on shallow SIMOX technology for high-speed and low-power applications, Proc. IEEE Int. SOI Conf.: 116–117Google Scholar
  67. 67.
    Fuse T, Oowaki Y, Yamada Y, Kamoshida M, Ohta M, Shino T, Kawanaka S, Terauchi M, Yoshida T, Matsubara G, Oshioka S, Watanabe S, Yoshimi M, Ohuchi K, Manabe S (1997) A 0.5V 200 MHz 1-stage 32 bit ALU using a body bias controlled SOI pass-gate logic. Digest of Technical papers of the International Solid-State Circuits Conf: 286–287Google Scholar
  68. 68.
    Ohtomo Y, Yasuda S, Nogawa M, Inoue J, Yamakoshi K, Sawada H, Ino M, Hino S, Sato Y, Takei Y, Watanabe T, Takeya K (1997)A 40Gb/s 8x8 ATM switch LSI chip using 0.25 µm CMOS/SIMOX. Digest of Technical papers of the International Solid-State Circuits Conf.:154–155Google Scholar
  69. 69.
    Chen J, Colinge JP, Flandre D, Gillon R, Raskin JP, Vanhoenacker D (1997) Comparison of TSi2, CoSi2, and NiSi for Thin-Film Silicon-On-Insulator Applications. Journal of the Electrochemical Society 144: 2437–2442CrossRefGoogle Scholar
  70. 70.
    Hürrich A, Hübler P, Eggert D, Kück H, Barthel W, Budde W, Raab M (1996) SOICMOS technology with monolithically integrated active and passive RF devices on high resistivity SIMOX substrates. Proc. IEEE Int. SOI Conf.: 130–131Google Scholar
  71. 71.
    D. Eggert, P. Huebler, A. Huerrich, H. Kueck, W. Budde, and M. Vorwerk (1997) A SOI-RF-CMOS technology on high-resistivity SIMOX substrates for microwave applications up to 5 GHz. IEEE Transactions on Electron Devices 44: 1981–1989ADSCrossRefGoogle Scholar
  72. 72.
    Ferlet-Cavrois V, Bracale A, Fel N, Musseau O, Raynaud C, Faynot O, Pelloie JL (1999) High-frequency characterization of SOI dynamic threshold voltage MOS (DTMOS) transistors. Proc. IEEE Int. SOI Conf: 24–25Google Scholar
  73. 73.
    Chen CL, Spector SJ, Blumgold RM, Neidhard RA, Beard WT, Yost DR, Knecht JM, Chen CK, Fritze M, Cerny CL, Cook JA, Wyatt PW, Keast CL (2002) High-performance fully depleted SOI RF CMOS. IEEE Electron Device Letters 23: 52–54ADSCrossRefGoogle Scholar
  74. 74.
    Raynaud C, Faynot O, Pelloie JL, Tabone C, Grouillet A, Martin F, Dambrinne G, Vanmackelberg M, Picheta L, Mackowiak E, Brut H, Llinares P, Sevenhans J, Compagne E, Fletcher G, Flandre D, Dessard V, Vanhoenacker D, Raskin JP, (2000) 70 GHz IMAX fully-depleted SOI MOSFET’s for low-power wireless applications. 30th European Microwave Week Proc. GAAS’2000 London, UK:268–271Google Scholar
  75. 75.
    Bracale A, Ferlet-Cavrois V, Fel N, Gautier JL, Pelloie JL, du Port de Poncharra J (2001) Validation of extracted high frequency small-signal parameters on SOI devices. Electrochemical Society Proc. 2001–3: 343–348Google Scholar
  76. 76.
    Matsumoto T, Maeda S, Ota K, Hirano Y, Eikyu K. Sayama H, lwamatsu T, Yamamoto K, Katoh T, Yamaguchi Y, Ipposhi T, Oda H, Maegawa S, Inoue Y, lnuishi M (2001) 70 nm SOI-CMOS of 135 GHz finax with dual offset-implanted source-drain extension structure for RF/analog and logic applications. Technical Digest of the International Electron Devices Meeting:219–222Google Scholar
  77. 77.
    Zamdmer N, Ray A, Plouchart JO, Wagner L, Fong N, Jenkins KA, Jin W, Smeys P, Yang I, Shahidi G, Assaderghi F (2001) A 0.13-pm SOI CMOS technology for low-power digital and RF applications. Digest of Technical Papers, Symposium on VLSI Technology, Japan Soc. Appl. Phys., Tokyo: 85–86Google Scholar
  78. 78.
    Momiyama Y, Hirose T, Kurata H, Goto K, Watanabe Y, Sugii T (2000) A 140 GHz ft and 60 GHz fmax DTMOS integrated with high-performance SOI logic technology. Technical Digest of the International Electron Devices Meeting: 451–454Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • J.-P. Colinge

There are no affiliations available

Personalised recommendations