Advertisement

Wafer Bonding pp 473-494 | Cite as

Debonding of Wafer-Bonded Interfaces for Handling and Transfer Applications

  • J. Bagdahn
  • M. Petzold
Part of the Springer Series in MATERIALS SCIENCE book series (SSMATERIALS, volume 75)

Abstract

The debonding of joined wafers in combination with wafer bonding techniques, sometimes called reversible wafer bonding, has different promising applications for the fabrication of microelectronic devices based on thin, flexible and brittle wafers, for optoelectronic devices like LEDs, solid state lasers or solar cells, as well as for MEMS (Microelectromechanical Systems). This chapter will be focused on debonding techniques of directly bonded wafers. However, attention will also be given briefly to wax and adhesive bonding/debonding technologies that are of interest for the temporary mechanical stiffening of wafers.

Keywords

Stress Intensity Factor Subcritical Crack Growth Wafer Bonding GaAs Wafer Transfer Application 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tong Q-T, Gafiteanu R, Gösele U (1992) Reversible silicon wafer bonding for substrate protection: Water-enhanced debonding. J Electrochem Soc Lett 139: L101–L102CrossRefGoogle Scholar
  2. 2.
    Lehmann V, Gösele U, Mitani K (1990) Contamination protection of semiconductor surfaces by wafer bonding. Solid State Technology 33: 91–92Google Scholar
  3. 3.
    Maszara W, Goetz G, Cavigila A, McKitterrick (1989) Bonding of silicon wafers for silicon on insulator. J Appl Phys 64: 4943–4949Google Scholar
  4. 4.
    Gilman JJ (1960) Direct measurement of the surface energy of crystals. J Appl Phys 31: 2208–2218ADSCrossRefGoogle Scholar
  5. 5.
    Bagdahn J et al (1998) Characterization of directly bonded silicon wafers by means of the double cantilever crack opening method. In: Electrochem Soc Proc, Vol 97–36, pp 291–298Google Scholar
  6. 6.
    Tong Q-T, Gösele U (1999) Semiconductor wafer bonding Science and Technology. John Wiley, New YorkGoogle Scholar
  7. 7.
    Shinichi T (1995) Separation of bonded wafer and separation device. Japanese Patent 07240355AGoogle Scholar
  8. 8.
    Fujimoto et al (1999) Jig for peeling a bonded wafer United States Patent 5, 897, 743Google Scholar
  9. 9.
    Laporte P (1998) Dispositif de décollement de plaquettes et procédé de mise en oeuvre de ce dispositif, European Patent EP 0 824 267 AlGoogle Scholar
  10. 10.
    Alexe M, Gösele U (2001) Wafer contamination protection by direct wafer bonding and air jet debonding. In: Electrochem Soc Proc Vol 99–35, pp 195–199Google Scholar
  11. 11.
    Gutjahr K et al (1998) Concepts of wafer debonding. In: Electrochem Soc Proc Vol 97–36, pp 291–298Google Scholar
  12. 12.
    Cha G, Lee B (1999) Apparatus and methods for wafer debonding using a liquid jet. United States Patent 5,863, 375Google Scholar
  13. 13.
    Cha G et al (2001) Why debonding is useful in SOI. In: Electrochem Soc Proc Vol 9935, pp 119–128Google Scholar
  14. 14.
    Azhdari A, Nemat-Nasser S (1996) Energy-release rate and crack kinking in anisotropic brittle solids. J Mech Phys Solids 44: 929–951ADSCrossRefGoogle Scholar
  15. 15.
    Lawn B (1995) Fracture of brittle solids. Cambridge University Press, 2nd ednGoogle Scholar
  16. 16.
    Cotterell B, Rice JR (1980) Slightly curved or kinked cracks. Int J Fract 16: 155–169CrossRefGoogle Scholar
  17. 17.
    Gao H, Chiu C-H (1992) Slightly curved or kinked cracks in anisotropic elastic solids. Int J of Solids Struct 29: 947–972zbMATHCrossRefGoogle Scholar
  18. 18.
    Bagdahn J, Petzold M (2001) Handling and transferring of thin semiconductor materials. German Patent: DE 200004359Google Scholar
  19. 19.
    Bagdahn J, Knoll H, Wiemer M, Petzold M (2003) Handling and transferring. J Microsystem Technologies 9: 204–209CrossRefGoogle Scholar
  20. 20.
    Bagdahn J, Petzold M (2001) Fatigue of directly wafer-bonded silicon under static and cyclic loading. submitted to the J of Microsystem Technologies 7: 175–182Google Scholar
  21. 21.
    Michalske T (1989) Fundamental studies of glass fracture. In: XV Congress on Glass. Leningrad, pp 3–15Google Scholar
  22. 22.
    Ahn et al. (1990) Growth, shrinkage and stability of interfacial oxide layers between directly bonded silicon wafers. Appl Phys A 50: 85–94ADSCrossRefGoogle Scholar
  23. 23.
    Irwin G (1957) Analysis of stresses and strains near the end of a crack traversing a plate. J of Appl Mech 24: 361–364Google Scholar
  24. 24.
    Murakami Y (1990) Stress intensity factors handbook. Pergamon Press, USAGoogle Scholar
  25. 25.
    Dragoi V et al (2001) Temporary and permanent wafer bonding for GaAs processing. In GaAs MANTECH Conference. Digest of Papers GaAs MANTECH. 2001, St.Louis, MO, USA., pp 192–195Google Scholar
  26. 26.
    Dragoi V (2002) private communicationGoogle Scholar
  27. 27.
    Shiga N (1993) Apparatus for peeling semiconductor substrate. United States Patent 5,240, 546Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • J. Bagdahn
  • M. Petzold

There are no affiliations available

Personalised recommendations