Advertisement

Wafer Bonding pp 451-471 | Cite as

Wafer Bonding of Ferroelectric Materials

  • M. Alexe
  • I. Radu
  • I. Szafraniak
Part of the Springer Series in MATERIALS SCIENCE book series (SSMATERIALS, volume 75)

Abstract

In recent years a major effort has been put into achieving integration of functional materials into semiconductor technology. Among functional materials ferroelectrics are an important class of materials, exhibiting a large spectrum of properties and effects including the piezoelectric effect, pyroelectric effect, electro-optic effect, spontaneous polarization, etc. Ferroelectrics are attractive for many applications, the most important being ferroelectric non-volatile random access memories (FERAMs) and micro-electromechanical mechanical system (MEMS) devices. For these specific applications, but also desirable for most other envisaged applications of ferroelectric materials, direct integration of ferroelectrics with silicon or other semiconductors of technological potential would be highly desirable. Beside the memory effect, the photoelectric and pyroelectric effects in ferroelectricsemiconductor heterostructures [1,2] could be promising for developing new types of integrated detectors.

Keywords

Ferroelectric Material Trap Density Layer Transfer Wafer Bonding Ferroelectric Thin Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chen CJ, Wu ET, Xu YH, Chen KC, MacKenzie JD (1990) Sol-gel derived ferroelectric PZT thin films on doped silicon substrates. Ferroelectrics 112: 321–7CrossRefGoogle Scholar
  2. 2.
    Pintilie L, Alexe M, Pintilie I, Botila T (1996) Photovoltaic effect in PbS/PbTiO3/Si heterostructures. Appl. Phys. Lett 69: 1571–3ADSCrossRefGoogle Scholar
  3. 3.
    Scott JF, Paz de Araujo CA (1989) Ferroelectric memories. Science 246: 1400ADSCrossRefGoogle Scholar
  4. 4.
    Sumi T, Moriwaki N, Nakane G, Nakakuma T, Judai Y, Uemoto Y, Nagano Y, Hayashi S, Azuma M, Otsuki T, Kano G, Cuchiaro JD, Scott MC, McMillan LD, Paz de Araujo CA (1995) 256 Kb ferroelectric nonvolatile memory technology for 1T/1C cell with 100 ns read/write time at 3 V. Integrated Ferroelectrics 6: 1Google Scholar
  5. 5.
    Eaton SS, US Pat No 4, 873, 664 (1989)Google Scholar
  6. 6.
    Wu SY (1974), IEEE Trans Electron Dev ED-21:499Google Scholar
  7. 7.
    Rabson TA, Rost TA, Lin H (1995) Ferroelectric gate transistors. Integrated Ferroelectries 6: 15CrossRefGoogle Scholar
  8. 8.
    Tokumitsu E, Nakamura R, Ishiwara H (1997) Nonvolatile memory operations of metal-ferroelectric-insulator-semiconductor (MFIS) FETs using PLZT/STO/Si(100) structures. IEEE Electron Dev Lett 18: 160ADSCrossRefGoogle Scholar
  9. 9.
    Kalkur TS, Jacobs B, Argos G (1994) Characteristics of ferroelectric gate MOS and MOSFETs. Integrated Ferroelectrics 5: 177CrossRefGoogle Scholar
  10. 10.
    Scott JF (1998), Ferroelectric Memories, Springer VerlagGoogle Scholar
  11. 11.
    Auciello O, Kingon AI (1992) A critical review of physical vapor deposition techniques for the synthesis of ferroelectric thin films. Proc 8th IEEE Int Sympos on Applications of Ferroelectrics (Cat No92CH3080–9) IEEE, pp 320–31 New York, USAGoogle Scholar
  12. 12.
    Li SH, Miller RO (1999) Chemical Mechanical Polishing in Silicon Processing. Academic Press, BostonGoogle Scholar
  13. 13.
    Runnels SR, Eyman LM (1994) Tribology analysis of chemical-mechanical polishing. J Electrochem Soc 141: 1698CrossRefGoogle Scholar
  14. 14.
    Alexe M, Hesse D, Gösele U (1998) Deposition and processing of bismuth titanate thin films for direct wafer bonding. Mater Chem and Phys 55: 55–60CrossRefGoogle Scholar
  15. 15.
    Tomozawa M (1997) Oxide CMP mechanisms. Solid State Technology 40: 169Google Scholar
  16. 16.
    Alexe M, Senz S, Pignolet S, Hesse D, Gösele U (1999) Direct wafer bonding and layer transfer for ferroelectric thin film integration. Integrated Ferroelectrics 27: 205CrossRefGoogle Scholar
  17. 17.
    Alexe M (1998) Measurement of interface trap states in metal—ferroelectric—silicon heterostructures. Appl Phys Lett 72: 2283ADSCrossRefGoogle Scholar
  18. 18.
    Nicollian EH, Brews JR (1982) MOS Physics and Technology. John Wiley, New YorkGoogle Scholar
  19. 19.
    Alexe M, Senz S, Pignolet A, Hesse D, Gösele U (1999) Structural and electrical properties of metal—ferroelectric—silicon heterostructure fabricated by a direct wafer bonding and layer transfer process. Ferroelectrics 225: 75–82CrossRefGoogle Scholar
  20. 20.
    Massoud HZ (1997) Device physics and simulation of metal/ferroelectric-film/p-type silicon capacitors. Microelectronic Engineering 36: 95CrossRefGoogle Scholar
  21. 21.
    Grove AS (1967) Physics and Technology of Semiconductor Devices. John Wiley, New YorkGoogle Scholar
  22. 22.
    Alexe M, Senz S, Pignolet A, Hesse D, Gösele U (1999) Direct wafer bonding and layer transfer — a new approach to integration of ferroelectric oxides into silicon technology. Ferroelectrics 231: 169CrossRefGoogle Scholar
  23. 23.
    Alexe M, Senz S, Scott JF, Pignolet A, Hesse D, Gösele U (1998) Direct wafer bonding and layer transfer: an innovative way for the integration of ferroelectric oxides into silicon technology. Mater Res Soc Symp Proc 493: 517CrossRefGoogle Scholar
  24. 24.
    Hu C (1994) SOI (silicon-on-insulator) for high-speed ultra-large-scale integration. Japn J Appl Phys Part 1 33: 365–9ADSCrossRefGoogle Scholar
  25. 25.
    Bruel M (1995) Silicon-on-insulator material technology. Electron Lett 31: 1201CrossRefGoogle Scholar
  26. 26.
    Tong Q-Y, Gösele U (1999) Wafer bonding and layer splitting for microsystems. Adv Mater 11: 1404CrossRefGoogle Scholar
  27. 27.
    Alexe M, Dragoi V, Reiche M, Gösele U (2000) Low temperature GaAs/Si direct wafer bonding. Electronics Letters 36: 675–677CrossRefGoogle Scholar
  28. 28.
    Hung LJ, Tong Q-Y, Gösele U (1999) Hydrogen-implantation induced blistering and layer transfer of LaA1O/sub 3/ and sapphire. Electrochemical Solid-State Lett 2: 238CrossRefGoogle Scholar
  29. 29.
    Radu I, Szafraniak I, Scholz R, Alexe M, Gösele U (2002) Ferroelectric oxide single-crystalline layers by wafer bonding and hydrogen/helium implantation. Mater Res Soc Symp Proc 748: U1181–6CrossRefGoogle Scholar
  30. 30.
    Ruglovsky JL, Park YB, Ryan CB, Atwater HA (2002) Wafer bonding and layer transfer for thin film ferroelectrics. Mat Res Soc Symp Proc 748: U1171–6CrossRefGoogle Scholar
  31. 31.
    Watton R (1989) Ferroelectric materials and devices in infrared detection and imaging. Ferroelectrics 91: 87CrossRefGoogle Scholar
  32. 32.
    Patel A, Shorrocks NM, Whatmore RW (1992) Lead scandium tantalate thin films for thermal detectors. In: Ferroelectric Thin Films II Symposium. Mater Res Soc Symp Proc 243: 67–72Google Scholar
  33. 33.
    Scott JF (1997) Ferroelectric memories. Ferroelectrics Rev 1: 1Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • M. Alexe
  • I. Radu
  • I. Szafraniak

There are no affiliations available

Personalised recommendations